что такое группа кольцо поле
Группы, кольца, поля в математике
Группа: определение и примеры групп
Множество с алгебраической операцией называется группой, если выполняются следующие условия:
1) операция в ассоциативна: ;
2) в существует нейтральный элемент ;
Решение. Действительно, операция умножения определена на указанном множестве, так как
Кольцо
1) относительно операции сложения множество — коммутативная группа, т.е.
а) операция сложения коммутативна: ;
б) операция сложения ассоциативна: ;
в) существует нулевой элемент ;
г) для каждого элемента существует противоположный ему элемент ;
2) операция умножения в множестве ассоциативна:
3) операции сложения и умножения связаны законами дистрибутивности:
Кольцами являются множества целых, рациональных, действительных чисел, причем все они — коммутативные кольца с единицей. Примеры других колец, в том числе и некоммутативных, встретятся в дальнейшем. Как видим, кольцо — это множество, в котором определены три операции: сложение, умножение и вычитание.
Если операция коммутативна, то дистрибутивность слева операции относительно операции влечет дистрибутивность справа, так как
Решение. В самом деле, для любых положительных действительных чисел справедливы равенства
Следовательно, операция дистрибутивна справа относительно операции умножения чисел. Дистрибутивность слева относительно умножения опровергается примером
Пример В.7. Доказать, что множество чисел вида, где и — целые числа, является кольцом:
Решение. Действительно, операции сложения и умножения определены на рассматриваемом множестве, так как сумма и произведение двух чисел вида (В.2) имеют тоже самое представление:
Таким образом, рассматриваемое множество удовлетворяет всем условиям определения кольца.
Поле: определение и примеры полей
1) — коммутативное кольцо с единицей ;
Как видим, поле — это множество, в котором определены четыре операции: сложение, умножение, вычитание и деление. Полями, например, являются множества рациональных и действительных чисел.
Пример В.8. На множестве трех целых чисел определим две операции:
1) «сложение по модулю 3» — остаток от деления суммы на 3 (обозначим через );
2) «умножение по модулю 3» — остаток от деления произведения на 3 (обозначим через ).
Доказать, что множество является полем относительно введенных операций.
– остаток от деления на 3 суммы не изменится, если слагаемое (или не сколько слагаемых) заменить его остатком при делении на 3:
– остаток от деления на 3 произведения не изменится, если множитель (или несколько множителей) заменить его остатком при делении на 3:
Рассматриваемые в примере операции «сложения по модулю 3» и «умножения по модулю 3» можно представить в виде
Покажем, что множество является коммутативным кольцом с единицей. В самом деле, операция «сложения по модулю 3» коммутативна и ассоциативна. Это следует из коммутативности и ассоциативности сложения чисел. Действительно, из равенства следует, что
Коммутативность доказана. Заметим, впрочем, что коммутативность «сложения по модулю 3» видна непосредственно по таблице (см. рис.В.2): слагаемые и в таблице можно поменять местами, при этом таблица не изменится.
Из равенства следует, что
Ассоциативность «сложения по модулю 3» доказана.
Итак, множество относительно операции «сложения по модулю 3» является коммутативной группой.
Операция «умножение по модулю 3» ассоциативна и коммутативна, что следует из ассоциативности и коммутативности умножения целых чисел, а также свойств остатков:
Следовательно, операция «умножения по модулю 3» дистрибутивна слева относительно операции «сложения по модулю 3». Дистрибутивность справа можно не проверять, так как обе операции коммутативны.
Единичным элементом служит число 1 (что видно по таблице «умножения по модулю 3»). Следовательно, — коммутативное кольцо с единицей.
Пример В.9. Доказать, что множество чисел вида, где и — рациональные числа, является полем:
Решение. Действительно, операции сложения и умножения определены на рассматриваемом множестве, так как сумма и произведение двух чисел вида (В.З) имеют тоже самое представление:
Так как рассматриваемое множество является коммутативным кольцом с единицей и каждый элемент, отличный от нуля, имеет обратный, то оно является полем.
Группы, кольца, поля
Группой наз. множество G, для которого выполнены следующие аксиомы:
1) ассоциативность по сложению или умножению:
2) существование нейтрального элемента:
3) существование обратного элемента:
Группа наз. коммутативной, если
Кольцом наз. множество К на котором заданы две бинарные алгебраические операции сложения и умножения, и выполнены аксиомы:
0)
1) ассоциативность по сложению:
2) существование нейтрального элемента:
3) существование противоположного элемента:
Эти аксиомы являются обязательными. Если выполняются аксиомы:
6) ассоциативность по умножению, то кольцо наз. ассоциативным.
7) существование нейтрального элемента по умножению, то кольцо наз. кольцом с единицей.
8) коммутативность по умножению, то кольцо наз. коммутативным.
9) ,
то говорят, что в этом кольце все не нулевые элементы обратимы.
Кольца, тела, поля
Определение 2.5. Кольцом называют алгебру сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых выполняются равенства:
Операцию называют сложением кольца, операцию умножением кольца, элемент — нулем кольца, элемент — единицей кольца.
Равенства 1–7, указанные в определении, называют аксиомами кольца. Рассмотрим эти равенства с точки зрения понятия группы и моноида.
Связь между сложением кольца и умножением кольца устанавливает аксиома 7, согласно которой операция умножения дистрибутивна относительно операции сложения.
Замечание 2.2. В литературе встречается иной состав аксиом кольца, относящихся к умножению. Так, могут отсутствовать аксиома 6 (в кольце нет 1) и аксиома 5 (умножение не ассоциативно). В этом случае выделяют ассоциативные кольца (к аксиомам кольца добавляют требование ассоциативности умножения) и кольца с единицей. В последнем случае добавляются требования ассоциативности умножения и существования единицы.
Определение 2.6. Кольцо называют коммутативным, если его операция умножения коммутативна.
Пример 2.12. а. Алгебра есть коммутативное кольцо. Отметим, что алгебра кольцом не будет, поскольку — коммутативный моноид, но не группа.
в. Алгебра — коммутативное кольцо, что следует из свойств пересечения и симметрической разности множеств.
г. Пример некоммутативного кольца дает множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц. Единицей этого кольца является единичная матрица, а нулем — нулевая.
д. Пусть — линейное пространство. Рассмотрим множество всех линейных операторов, действующих в этом пространстве.
Основные аксиомы и тождества кольца
Аксиомы кольца называют также основными тождествами кольца. Тождество кольца — это равенство, справедливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца. Основные тождества постулируются, и из них затем могут быть выведены как следствия другие тождества. Рассмотрим некоторые из них.
Напомним, что аддитивная группа кольца коммутативна и в ней определена операция вычитания.
Теорема 2.8. В любом кольце выполняются следующие тождества:
Докажем третью пару тождеств. Рассмотрим первое из них. С учетом доказанного выше имеем
т.е. тождество справедливо. Второе тождество этой пары доказывается аналогично.
Первые два тождества из доказанных в теореме 2.8 выражают свойство, называемое аннулирующим свойством нуля в кольце. Третья же пара тождеств указанной теоремы выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания. Таким образом, производя вычисления в любом кольце, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.
Кольца и делители нуля
При отличных от нуля и приведенные матрицы являются делителями нуля.
Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению уже хотя бы потому, что это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.
Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют телом, коммутативное тело — полем, а группу ненулевых элементов тела (поля) по умножению — мультипликативной группой этого тела (поля). Согласно определению, поле есть частный случай кольца, в котором операции обладают дополнительными свойствами. Выпишем все свойства, выполнение которых требуется для операций поля. Их еще называют аксиомами поля.
б. Алгебры и есть поля, называемые полями действительных и комплексных чисел соответственно.
в. Примером тела, не являющегося полем, может служить алгебра кватернион.
Итак, мы видим, что известным законам сложения и умножения чисел соответствуют аксиомы поля. Занимаясь числовыми расчетами, мы «работаем в полях», а именно имеем дело преимущественно с полями рациональных и вещественных чисел, иногда «переселяемся» в поле комплексных чисел.
Группа, кольцо, поле. Простейшие свойства поля. Поле рациональных чисел. Упорядоченное поле
Алгебраической структурой называется множество, на котором задана одна или несколько алгебраических операций.
, т.е. в G сущ. нейтральный элемент относительно этой операции;
3) существует симметричный элемент.
Примеры: рассмотрим множество Z относительно операции сложения
0 – нейтральный элемент
a+(-a)=0
Если в группе G операция * коммутативна, то такая группа называется коммутативной или абелевой.
Также абелевыми группами являются: множество ; ; (рациональных, действительных и комплексных чисел)
не является группой, т.к. нарушено 3 условие (2×½=1, но ½ є Z)
не группа, т.к. не существует обратного элемента для нуля
группа (необходимо выбросить 0, для того чтобы рациональные числа «×» были группой).
Кольца. Множество, в котором заданы 2 алгебраические операции «+» и «×» наз. кольцом, если:
1)относительно «+» это множество является абелевой группой ;
2) «+» и «×» связаны законом дистрибутивности, т.е. (a+b)c=ac+bc (правый закон дистрибутивности) и с(a+b)=ca+cb (левый закон дистрибутивности)
Если «×» коммутативно, то кольцо тоже называется коммутативным.
Если «×» ассоциативно, то кольцо называется ассоциативным.
0 є Z и
2)ab=ba умножение коммутативно; a(bc)=(ab)c – ассоциативно
Не коммутативным, но ассоциативным кольцом является кольцо квадратных матриц.
Рассмотрим матрицу 2-го порядка:
абелева группа; выполняется дистрибутивность относительно сложения
абелева группа (множество матриц по сложению)
– нулевая матрица
– противоположная матрица
≠
Умножение матриц дистрибутивно относительно сложения: (A+B)C=AC+BC и C(A+B)=CA+CB
В кольцах могут быть делители нуля – это такие элементы a≠0, b≠0, но ab=0.
Существуют кольца как с делителями нуля, так и без делителей нуля. В полях делителей нуля нет.
Если mod простой, то делителей нуля нет.
Делители нуля есть в кольцах матриц: =
Поля. Коммутативное и ассоциативное кольцо с единицей называется полем, если для каждого ненулевого элемента есть обратный.
Наименьшим числовым полем является поле рациональных чисел. Q=
Полями также являются действительные (R) и комплексные (С) числа.
Характеристикой поля называется такое натуральное наименьшее число nєN, что если l=1, то , если такого n не существует, то это поле характеристики 0 (бесконечное поле).
Числовое множество, в котором есть 1 и в котором выполнимы операции «+», «×» и «-», «:» кроме (:0) называется числовым полем.
Полями характеристики 0 являются числовые поля Q, R, C.
Z/p, p – простое число.
Множество классов вычетов по простому полю является полем характеристики p. Поле характеристики p – p различных элементов.
3) если ab=0, то a=0 или b=0;
4) если a0 и b0, то ab0;
5) a/b=c/d тогда и только тогда, когда ad=bc, b0 и d0;
Док-во 1-3:
Поле рациональных чисел. Полем рациональных чисел называется поле частных кольца целых чисел. Элементы поля рациональных чисел называются рациональными числами. Из определения следует, что любое рациональное число можно представить в виде частного целых чисел. Отметим, что любое поле, изоморфное полю рациональных чисел, также является полем рациональных чисел. Отношение порядка на множестве Q рациональных чисел вводится с помощью отношения порядка
Дата добавления: 2015-07-30 ; просмотров: 4692 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Презентация была опубликована 8 лет назад пользователемЗинаида Хухрякова
Похожие презентации
Презентация на тему: » Элементы общей алгебры Группа, кольцо, поле, тело, решетка.» — Транскрипт:
1 Элементы общей алгебры Группа, кольцо, поле, тело, решетка
2 Пример Рассмотрим множество несобственных матриц – линейную группу порядка n. Рассмотрим матрицы, определители которых равны единице. L n (1) L n. det (A 1 *A 2 )=det A 1 *det A 2. Отсюда следует, что определитель произведения двух матриц из L n (1) равен единице, поэтому L n (1) подгруппа группы L n.
4 Истинная подгруппа Каждая группа G обладает единичной подгруппой E=
5 Циклическая группа Пересечение всех подгрупп группы G, содержащих все элементы некоторого непустого множества M, называется подгруппой, порожденной множеством M, и обозначается. Если M состоит из одного элемента a, то называется циклической подгруппой элемента a. Группа, совпадающая с одной из своих циклических подгрупп, называется циклической группой. Если группа G 1 изоморфна некоторой подгруппе H группы G, то говорят, что группа G 1 может быть вложена в группу G.
6 Кольцо Множество R с двумя определенными в нем алгебраическими операциями, сложением и умножением, называется кольцом, если относительно операции сложения оно является абелевой группой, а операция умножения дистрибутивна, т.е. для любых элементов a, b и с R справедливы равенства a(b+c)=ab+ac; (b+c)a=ba+ca.
7 Коммутативное кольцо Если операция умножения, определенная в кольце коммутативна, то такое кольцо называется коммутативным кольцом. Из определения следует, что любое кольцо имеет две бинарные и одну унарную операцию, поэтому его тип – (2,2,1).
8 Тело Когда группа коммутативна, ее единица называется нулем кольца. Но в кольце может быть единица, т.е. нейтральный элемент по отношению к умножению. Если при этом в кольце R элементы не равны нулю и образуют относительно операции умножения группу, она называется телом. Единица этой группы называется единицей тела. Рассмотрим множество целых чисел – кольцо с единицей, не тело, т.к. нет обратного кроме единицы по отношению к умножению. Множество квадратных матриц данной размерности – кольцо с единицей, не тело.
9 Поле Полем называется коммутативное кольцо, в котором для любого ненулевого элемента a 0 и любого элемента b существует единственный элемент х такой, что ax = b. Другими словами, для любой пары элементов a 0 и b уравнение ax = b имеет единственный корень. Практически это определяет в поле существование операции деления.
10 Пример Алгебра (Z;+) является кольцом и называется кольцом целых чисел. Она, однако, не является полем, поскольку, например, уравнение 2х=3 в ней неразрешимо. Алгебра (Q;+;*) является полем и называется полем рациональных чисел. Все остатки от деления на натуральное число образуют кольцо, а от деления на простое число поле.
12 Алгебра вычетов Все остатки от деления на натуральное число образуют кольцо, а от деления на простое число поле. Деление: остаток меньше модуля m, остаток (0, 1, …, m-1)
13 Таблица Кэли Чтобы задать операцию, зададим таблицу Кэли. Таблица Кэли в абстрактной алгебре таблица, которая описывает структуру конечных алгебраических систем с одной бинарной операцией. Названа в честь английского математика Артура Кэли.
15 k 3 =C*9+3 k 5 =C*9+5 k 3 +k 5 =(C+C) mod 9=8 5 8 mod 9=4 6 5 mod 9=2
17 Умножение по модулю m a b mod 5 k 3 =C5+3 k 2 =C5+2 k 1 =k 2 k 3 =CC25+(C+C)5+6
19 Решетка Решёткой называется множество M, частично упорядоченное отношением нестрогого порядка, с двумя бинарными операциями и, такое что выполнены следующие условия (аксиомы решётки): 1. a a=a; aa=a (идемподентность); 2. a b=b a; ab=ba (коммутативность); 3. (a b) c=a (b c); (ab)c=a(bc) (ассоциативность); 4. ab) a=a, (a b)a=a (поглощение).
20 Решетки Решётка называется дистрибутивной, если выполняются два следующих условия a (bc)=(a b)(a c), и a(b c)=(ab) (ac). Если в решётке существует элемент 0, такой что для любого выполняется, то он называется нижней гранью (нулём) решётки. Если в решётке существует элемент 1, такой что для любого выполняется, то он называется верхней гранью (единицей) решётки. Решётка, имеющая верхнюю и нижнюю грани, называется ограниченной.
21 Дополнение Теорема. Если нижняя (верхняя) грань решётки существует, то она единственная. В ограниченной решётке элемент a –1 называется дополнением элемента a, если aa –1 =0 и a a –1 =1.
22 Примеры Любое полностью упорядоченное множество, например, множество целых чисел, можно превратить в решётку, определив для любых a,b M, что a b=max(a,b) и ab=min(a,b). Определим на множестве натуральных чисел отношение частичного порядка следующим образом: ab, если a является делителем b. Тогда a b есть наименьшее общее кратное этих чисел, а ab их наибольший общий делитель.
23 Решётка, в которой пересечение и объединение существуют для любого подмножества её элементов, называется полной. Конечная решётка всегда полна.