электрическое поле называется однородным если

Однородное электрическое поле

Однородное электрическое поле

Odnorodnoe pole

magnify clip

См. также

Смотреть что такое «Однородное электрическое поле» в других словарях:

Электрическое поле — Классическая электродинамика … Википедия

однородное — однородное: Одинаково окрашенное в разрезе мыло. Источник: ГОСТ 28546 2002: Мыло туалетное твердое. Общие технические условия оригинал документа Смотри также родственные термины … Словарь-справочник терминов нормативно-технической документации

однородное поле — Электрическое поле с практически постоянным градиентом напряжения между электродами как между двумя сферами, радиус каждой из которых больше расстояния между ними. [ГОСТ Р 50030.1 2000 (МЭК 60947 1 99)] EN homogeneous (uniform) field electric… … Справочник технического переводчика

однородное поле — 2.9.15 однородное поле: Электрическое поле с практически постоянным градиентом напряжения между электродами, не менее двух, радиус каждой из которых больше расстояния между ними (2.5.62 ГОСТ Р 50030.1). Источник … Словарь-справочник терминов нормативно-технической документации

Важнейшие открытия в физике — История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

Микроканальная пластина — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Микроканал … Википедия

Циклотрон — Современный циклотрон, используемый для радиационной терапии … Википедия

ГОСТ Р 50030.1-2000: Аппаратура распределения и управления низковольтная. Часть 1. Общие требования и методы испытаний. — Терминология ГОСТ Р 50030.1 2000: Аппаратура распределения и управления низковольтная. Часть 1. Общие требования и методы испытаний. оригинал документа: 2.2.11 автоматический выключатель : Контактный коммутационный аппарат, способный включать,… … Словарь-справочник терминов нормативно-технической документации

ГОСТ Р 50030.1-2007: Аппаратура распределения и управления низковольтная. Часть 1. Общие требования — Терминология ГОСТ Р 50030.1 2007: Аппаратура распределения и управления низковольтная. Часть 1. Общие требования оригинал документа: 2.2.11 автоматический выключатель: Контактный коммутационный аппарат, способный включать, проводить и отключать… … Словарь-справочник терминов нормативно-технической документации

Ловушка Пеннинга — Ловушка Пеннинга устройство, использующее однородное статическое магнитное поле и пространственно неоднородное электрическое поле для хранения заряженных частиц. Этот тип ловушек часто используется при точных измерениях свойств ионов и… … Википедия

Источник

Тема 1.1. Электрическое поле.

Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.

Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.

Свойства электрического поля :

Порождается электрическим зарядом.

Обнаруживается по действию на заряд.

Действует на заряд с некоторой силой.

Распространяется в пространстве с конечной скоростью с=3·10 8 м/с.

Направление вектора напряженности совпадает с направлением вектора кулоновской силы.

Напряженность поля не зависит от значения пробного заряда q ; определяется зарядами – источниками поля, является силовой характеристикой этого поля.

Единица в СИ – Н/Кл или В/м.

Неоднородное электрическое поле :

Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.

Однородное электрическое поле:

На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.

Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.

Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q :

Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей

На практике используют разность потенциалов :

В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.

Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.

На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.

Связь между напряженностью электрического поля и напряжением:

Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда.

Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

изменение химического состава проводников (наблюдается преимущественно в электролитах);

создание магнитного поля (проявляется у всех без исключения проводников)

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

Постоянный ток — ток, направление и величина которого не меняются во времени.

Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

термическое (ожоги, нагрев и повреждение кровеносных сосудов);

электролитическое (разложение крови, нарушение физико-химического состава);

биологическое (раздражение и возбуждение тканей организма, судороги);

механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови).

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;

минимально ощутимый человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;

пороговым неотпускающим называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;

фибрилляционным порогом называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

Источник

Что такое электрическое поле, его классификация и характеристики

Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.

Определение

Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.

Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].

Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.

opredelenie elektricheskogo polya Рис. 1. Определение понятия «электрическое поле»

Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.

Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.

Характерные физические свойства:

Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.

Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.

Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.

Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.

Классификация

Электрические поля бывают двух видов: однородные и неоднородные.

Однородное электрическое поле

Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.

В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).

primer odnorodnosti Рис. 2. Пример однородности

Неоднородное электрическое поле

Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.

elektricheskij dipol Рис. 3. Электрический диполь vihrevye polya Рис. 4. Вихревые поля

Характеристики

Основными характеристиками являются:

Потенциал

Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.

Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.

Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.

Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ=0.

Напряжённость поля

Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.

Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.

Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.

elektricheskoe pole polozhitelnogo i otricatelnogo vektora napryazhyonnosti Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости

Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.

Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.

napravlenie linij napryazhyonnosti polozhitelnyh i otricatelnyh zaryadovРис. 6. Направление линий напряжённости положительных и отрицательных зарядов

Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.

Для общего случая распределения зарядов имеем:

obshhij sluchaj raspredeleniya zaryadov

Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:

Напряжение

Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.

Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.

Методы обнаружения

Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.

Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.

Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.

Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.

Методы расчета электрического поля

Для расчётов параметров используются различные аналитические или численные методы:

Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.

Использование

Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.

На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.

Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.

К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.

Источник

Однородное электростатическое поле и его работа

теория по физике ? электростатика

Однородное электрическое поле сосредоточено между разноименно заряженными пластинами (обкладками конденсатора).

image1 16

Характеристики однородного электростатического поля

d — расстояние между заряженными пластинами.

Подсказки к решению задач:

Силовые линии Начинаются на положительно заряженной пластине, а заканчиваются на отрицательно заряженной. Силовые линии параллельны друг другу, т. е. поле однородно.
Напряженность
Эквипотенциальные поверхности Плоскости, параллельные заряженным пластинам.
Закон Кулона

Важно! Направление траектории совпадает с направлением равнодействующей силы.

Равнодействующая силы находится по второму закону Ньютона:

Из рисунка видно, что:

Пример №1. Полый шарик массой m = 0,4 г с зарядом q = 8 нКл движется в горизонтальном однородном электрическом поле, напряженность которого E = 500 кВ/м. Какой угол α образует с вертикалью траектория шарика, если его начальная скорость равна нулю?

image5 6

При движении в электрическом поле на заряженную частицу действует сила тяжести:

На нее также действует сила Кулона со стороны электрического поля:

В инерциальной система отсчета, связанной с Землей, в соответствии со вторым законом Ньютона:

При движении из состояния покоя с постоянным ускорением тело движется по прямой в направлении вектора ускорения, т. е. в направлении равнодействующей приложенных сил. Прямая, вдоль которой направлен вектор ускорения, образует угол с вертикалью, равный:

image6 5

Тангенс, равный единице, соответствует углу, равному 45 градусам.

Работа однородного электрического поля

Из курса механики вспомним, что работа определяется произведением силы, действующей на тело, на его перемещение и косинус угла между векторами силы и этого перемещения:

Эту же формулу можно использовать для нахождения работы однородного электрического поля. В качестве силы в данном случае выступает сила Кулона:

А произведение перемещения на косинус угла между силой и перемещением в этом случае равно разности начального и конечного положения заряда:

image7 5

Отсюда работа однородного электрического поля равна:

Формулы работы электрического поля

Работу также можно выразить через разность потенциалов:

A = ± q ( φ 1 − φ 2 ) = ± q U 12

Внимание! Работа электростатического поля не зависит от вида траектории.

Работа и изменение кинетической энергии:

Работа и изменение потенциальной энергии:

A = − ( q E r − q E r 0 ) = − Δ W p

Пример №2. В точке А потенциал электрического поля равен 200 В. Потенциал в точке В равен 100В. Какую работу совершают силы электростатического поля при перемещении заряда 5 мКл из точки А в точку В?

Screenshot 4 3Положительный заряд перемещается в однородном электростатическом поле из точки 1 в точку 2 по разным траекториям. Работа сил электростатического поля

а) максимальна в случае перемещения по траектории I

б) не совершается в случае перемещения по траектории II

в) минимальна в случае перемещения по траектории III

г) одинакова при перемещении по всем траекториям

Алгоритм решения

Решение

Кулоновская сила — это потенциальная сила. Поэтому работа, которую она совершает, не зависит от вида траектории. Учитываться будет только перемещение, равное кратчайшему расстоянию между точками 1 и 2. Следовательно, работа будет одинаковой при перемещении положительного заряда по всем траекториям.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 5 2Однородное электростатическое поле создано равномерно заряженной протяжённой горизонтальной пластиной. Линии напряжённости поля направлены вертикально вверх (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

1) Пластина имеет отрицательный заряд.

2) Потенциал электростатического поля в точке В ниже, чем в точке С.

3) Работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки А и в точку В равна нулю.

4) Если в точку А поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вниз.

5) Напряжённость поля в точке А меньше, чем в точке С.

Алгоритм решения

Решение

Согласно утверждению 1, пластина имеет отрицательный заряд. Известно, что векторы напряженности поля, создаваемого отрицательным зарядом, направляются в сторону этого заряда. Но мы видим, что векторы направляются от заряда. Следовательно, пластина заряжена положительно, а утверждение 1 неверно.

Согласно утверждению 2, потенциал электростатического поля в точке В ниже, чем в точке С. Известно, что потенциал зависит от расстояния до отрицательно пластины. Поскольку в нашем случае пластина заряжена положительно, с увеличением расстояния от нее потенциал уменьшается. Поэтому потенциал в точке С меньше потенциала в точке В, а утверждение 2 неверно.

Согласно утверждению 3, работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки А и в точку В равна нулю. Работа определяется формулой:

Видно, что работа зависит от перемещения относительно заряженной пластины. Но точки А и В находятся от пластины на одинаковом расстоянии. Следовательно, перемещение относительно нее равно 0. Поэтому работа по перемещению заряда тоже будет нулевой, и утверждение 3 верно.

Согласно утверждению 4, если в точку А поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вниз. Это действительно так. Мы выяснили, что пластина заряжена положительно. Следовательно, отрицательный заряд будет притягиваться к ней, и утверждение 4 верно.

Согласно утверждению 5, напряжённость поля в точке А меньше, чем в точке С. Это не так, потому что речь идет об однородном поле. Напряженность однородного поля одинакова во всех точках, и утверждение 5 неверно.

Верные утверждения: 3 и 4.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Adblock
detector
image2 10 Равновесие заряженного тела в электростатическом поле:

Сила тяжести равна произведению массы заряженного тела на ускорение свободного падения:

image3 8 Отклонение от вертикали нити с заряженным телом в горизонтальном электростатическом поле. Второй закон Ньютона в векторной форме:

− F K + m − g + − T = m − a

Отсюда сила Кулона равна:

image4 6