электрическое поле равномерно заряженного шара
§ 1.12. Поле заряженной плоскости, сферы и шара
Поле равномерно заряженной бесконечной плоскости
Когда заряд распределен по какой-либо поверхности, то для расчета полей удобно ввести поверхностную плотность заряда с. Выделим на плоской поверхности маленький участок площадью ΔS. Пусть заряд этого участка равен Δq. Поверхностной плотностью заряда называют отношение заряда Δq к площади поверхности, по которой он распределен:
Эта плотность может непрерывно изменяться вдоль поверхности. Конечно, электрический заряд имеет дискретную (прерывную) структуру, так как сосредоточен в элементарных частицах. Но если на поверхности площадью ΔS содержится огромное число элементарных зарядов, то дискретную структуру заряда можно не принимать во внимание. Мы ведь пользуемся понятием плотности, считая, что масса непрерывно распределена в пространстве. А на самом деле все тела состоят из дискретных образований — атомов.
В случае равномерного распределения заряда q по поверхности площадью S поверхностная плотность заряда постоянна и равна:
Рассмотрим бесконечную равномерно заряженную плоскость. Поверхностная плотность заряда σ известна. Из соображений симметрии очевидно, что линии напряженности представляют собой прямые, перпендикулярные плоскости. Поле бесконечной плоскости — однородное поле. Во всех точках пространства, независимо от расстояния до плоскости, напряженность поля одна и та же.
Для применения теоремы Гаусса нужно выбрать замкнутую поверхность таким образом, чтобы можно было легко вычислить поток напряженности электрического поля через эту поверхность. В данном случае удобнее всего выбрать цилиндр, образующие которого параллельны линиям напряженности электрического поля, а основания параллельны плоскости (рис. 1.43).
Тогда поток через боковую поверхность цилиндра будет равен нулю. Поэтому полный поток равен потоку через основания цилиндра А и В:
где Еn — проекция вектора напряженности на нормаль к основанию цилиндра. Полный заряд внутри цилиндра равен σS. Согласно теореме Гаусса
Отсюда модуль напряженности равен:
В СИ эта формула принимает вид:
а в абсолютной системе
Поле равномерно заряженной сферы
Поток напряженности электрического поля через любую замкнутую поверхность внутри сферы равен нулю, так как равен нулю заряд. Это может быть лишь в том случае, когда напряженность поля внутри сферы равна нулю.
Найдем напряженность поля вне сферы. Из соображений симметрии ясно, что линии напряженности начинаются на поверхности сферы (в случае положительного заряда), направлены по радиусам сферы и перпендикулярны ее поверхности (рис. 1.44). Поэтому модуль напряженности поля одинаков во всех точках, лежащих на одинаковых расстояниях от центра сферы.
Проведем сферическую поверхность радиусом r > R, где R — радиус заряженной сферы. Поток напряженности через эту поверхность равен:
Если заряд сферы q, то по теореме Гаусса
Следовательно, модуль напряженности поля при r > R равен:
Таким образом, поле заряженной сферы совпадает вне сферы с полем точечного заряда, расположенного в центре сферы. График зависимости Е(r) изображен на рисунке 1.45.
Поле равномерно заряженного шара
Для характеристики распределения заряда по объему используется понятие объемной плотности заряда. Объемной плотностью заряда называется отношение заряда Δq к объему ΔV, в котором он распределен:
Эта плотность может непрерывно изменяться внутри заряженного тела. Если заряд q равномерно распределен по объему V, то объемная плотность заряда постоянна и равна:
Будем считать, что шар радиусом R равномерно заряжен; плотность заряда ρ известна. Полный заряд шара
Напряженность электрического поля вне шара можно найти с помощью теоремы Гаусса точно так же, как и напряженность равномерно заряженной сферы [см. формулу (1.12.9)]:
(при условии, что r > R). Поле аналогично полю точечного заряда q, расположенного в центре шара.
Для нахождения поля внутри шара нужно применить теорему Гаусса к потоку напряженности через сферическую поверхность радиусом к
Напряженность электрического поля линейно растет с увеличением расстояния вплоть до u = R. При r > R она определяется формулой (1.12.12). График модуля напряженности поля в зависимости от расстояния до центра представлен на рисунке 1.47.
Теорема Гаусса позволяет сравнительно просто определить напряженность электрического поля, если распределение заряда обладает определенной симметрией. Формулы (1.12.5), (1.12.9) и (1.12.15) следует запомнить. Их придется часто использовать.
Вопрос для самопроверки
* Мы предполагаем, что диэлектрическая проницаемость среды одинакова внутри и вне шара.
Электрическое поле заряженного шара:
Пусть электропроводящий шар радиусом
Определим напряженность поля, создаваемого заряженным шаром (сферой) в его центре, на поверхности и за его пределами. Для этого мы сначала разделим заряд на несколько зарядов, равномерно распределенных по поверхности шара, т.е.
.
Итоговая напряженность поля и
любых одинаковых зарядов в центре шара на основе принципа суперпозиции равна нулю. Значит, внутри заряженной сферы напряженность поля будет равна нулю.
Найдем напряженность поля в произвольной точке , расположенной на расстоянии
от поверхности шара. Выделим пару зарядов
и
, расположенных симметрично линии
. Эти заряды создают напряженность на оси, направленной по оси
. Значит, силовые линии напряженности поля в точке за пределами шара соответствуют силовым линиям положительно заряженного точечного заряда, направленным из центра шара (рис. 7.5 б)
Напряженность электрического поля на поверхности заряженного шара определяется следующей формулой:
Из-за того, что напряженность поля, созданного в точке за пределами заряженного шара, одинаковы с полем, созданным точечным зарядом, напряженность поля, созданного в точке за пределами шара, определяется по формуле:
Это означает, что напряженность поля уменьшается обратно пропорционально квадрату расстояния (рис. 7.5 в).
Напряженность электрического поля зависит от свойств среды, в которой расположен заряд, создающий поле. Рассмотрим случай, когда между двумя противоположно заряженными пластинами помещен диэлектрик (рис. 7.6).
В диэлектрике свободных электронов очень мало. Основные электроны расположены в электронной оболочке атома. Под воздействием поля электрических зарядов пластин электронная оболочка деформируется. В результате центры положительных и отрицательных зарядов атома не накладываются друг на друга. Это явление называется поляризацией диэлектрика.
Напряженность поля , создаваемого поляризованными атомами (молекулами), направлена противоположно напряженности основного поля
. В результате общая напряженность поля снижается
. Величина, показывающая во сколько раз уменьшается напряженность поля, называется диэлектрической восприимчивостью диэлектрика:
В таком случае напряженность поля в точке, расположенной на расстоянии от точечного заряда, расположенного в диэлектрике, тоже уменьшается в ε раз:
Также сила взаимодействия точечных зарядов, расположенных в однородном диэлектрике, будет в раз меньше, чем сила их взаимодействия в вакууме, и сила этого взаимодействия вычисляется с помощью следующего выражения:
Диэлектрическая восприимчивость – это безразмерная величина.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Применение теоремы Гаусса для расчета электрических полей.
В ряде случаев теорема Гаусса позволяет найти напряженность электрического поля протяженных заряженных тел, не прибегая к вычислению громоздких интегралов. Обычно это относится к телам, чья геометрическая форма обладает определенными элементами симметрии (шар, цилиндр, плоскость). Рассмотрим некоторые примеры применения теоремы Гаусса для расчета напряженности электрических полей.
Пример 1. Поле равномерно заряженной плоскости.
Электрическое поле, создаваемое бесконечно протяженной равномерно заряженной плоскостью, является однородным – в каждой точке пространства вне плоскости его напряженность всюду одинакова. Направлено это поле перпендикулярно к плоскости в обе стороны (рис.2.5). Поэтому для потока вектора напряженности поля через произвольно выбранную цилиндрическую поверхность, опирающуюся на элемент плоскости ΔS, можем написать: , откуда
, где
— поверхностная плотность заряда. Размерность в СИ:
.
Таким образом, искомая напряженность электрического поля равномернозаряженной плоскости .
Пример 2. Поле равномерно заряженной нити (цилиндра).
В данном случае электрическое поле обладает аксиальной симметрией – не зависит от азимутального угла φ и координаты z и направлено вдоль радиус-вектора
(рис.2.6). Поэтому для потока вектора
через выбранную цилиндрическую поверхность с осью, совпадающей с заряженной нитью, имеем:
, где
— элемент цилиндрической поверхности; l – длина произвольного участка нити.
С другой стороны, по теореме Гаусса этот поток равен: причем
,
— линейная плотность заряда нити. Отсюда находим:
.
Искомая напряженность электрического поля равномерно заряженной нити: .
Пример 3. Поле равномерно заряженного шара.
а) Металлический шар. При равновесии заряды равномерно распределяются по внешней поверхности заряженного шара (рис.2.7). Поэтому при
) электрическое поле, созданное равномерно распределенными по его поверхности зарядами, обладает сферической симметрией (направлено по радиальным линиям), поэтому, согласно теореме Гаусса:
.
Видим, что электрическое поле равномерно заряженного металлического шара не зависит от радиуса шара и совпадает с полем точечного заряда.
б) Диэлектрический шар.
|
Рассмотрим шар, с условной диэлектрической проницаемостью ε = 1, равномерно заряженный по объему с плотностью заряда
(рис.2.8).
Размерность объемной плотности заряда в СИ: .
Полный заряд шара, очевидно, есть: .
Имеем по теореме Гаусса:
1) Внутри шара (r R): , откуда
=
,
то есть вне заряженного диэлектрического шара электрическое поле такое же, как и в случае металлического шара.
На рис.2.9 показан качественный ход зависимостей E(r) для металлического и диэлектрического шаров.
металл Рис.2.9. Зависимость E(r).
диэлектрик
1.4 Теорема Гаусса. Вектор электрической индукции.
Теорема Гаусса.
Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя теорему Гаусса, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.
Этот результат справедлив для любой замкнутой поверхности произвольной формы,охватывающей заряд.
Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю,так как число линий напряженности,входящих в поверхность,равно числу линий напряженности, выходящих из нее.
Рассмотрим общий случай произвольной поверхности, окружающей n зарядов.Согласно принципу суперпозиции напряженностьполя ,создаваемого всеми зарядами, равна сумме напряженностей
, создаваемых каждым зарядом в отдельности. Поэтому
Теорема Гаусса для электростатического поля в вакууме:потоквектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленных на ε0.
В общем случае электрические заряды могут быть распределены с некоторой объемной плотностью , различной в разных местах пространства. Тогда суммарный заряд объема V, охватываемого замкнутой поверхностью S равен
и теорему Гаусса следует записать в виде
.
Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право.
Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.
Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все.
ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Электрическое поле равномерно заряженного шара
Вычисление электрических полей с помощью теоремы Остроградского –Гаусса | |
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах. Поле бесконечной однородно заряженной плоскости Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности. Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность Очевидно, что в симметричных, относительно плоскости точках, напряженность Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Тогда Суммарный поток через замкнутую поверхность (цилиндр) будет равен: Внутри поверхности заключен заряд откуда видно, что напряженность поля плоскости S равна: Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости Поле двух равномерно заряженных плоскостей Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13). Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор). Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): Механические силы, действующие между заряженными телами, называют пондермоторными. Тогда сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы. Поле заряженного бесконечно длинного цилиндра (нити) Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра. Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров Следовательно, поток вектора При Если Если уменьшать радиус цилиндра R (при Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае: Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор). Поле заряженного пустотелого шара Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, Если откуда поле вне сферы: Внутри сферы, при Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы. Поле объемного заряженного шара Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула: Но внутри шара при где ρ – объемная плотность заряда, равная: Таким образом, внутри шара
detector |