энергия диполя во внешнем поле

3.2. Электрический диполь

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай — полное отсутствие зарядов — нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды — в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему — два равных по величине и противоположных по знаку точечных заряда +q и –q, находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем.

Электрический диполь — это система, состоящая из двух точечных равных по величине и противоположных по знаку зарядов, находящихся на расстоянии l друг от друга (рис. 3.6).

42clip image001

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

000106

Рис. 3.7. Линии напряженности электрического поля электрического диполя

000107

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

000108

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является электрический дипольный момент. Введем вектор l, направленный от отрицательного заряда (–q) к положительному (+q), тогда вектор р, называемый электрическим моментом диполя или просто дипольным моментом, определяется как

000109

Рассмотрим поведение «жесткого» диполя — то есть расстояние 688clip image001которого не меняется — во внешнем поле Е (рис. 3.10).

000469

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол 73clip image002. На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F1 = +qE, а на отрицательный — противоположно направленная и равная F2 = –qE. Вращающий момент этой пары сил равен

689clip image001

Так как ql = р, то М = рЕ sin 73clip image002или в векторных обозначениях

690clip image001

(Напомним, что символ

691clip image001

означает векторное произведение векторов а и b.) Таким образом, при неизменном дипольном моменте молекулы (692clip image001) механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E.

Под действием момента сил М диполь поворачивается, при этом совершается работа

693clip image001

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

694clip image001

695clip image001

000111

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е. В этом случае 698clip image001, а, следовательно, и М = 0. С другой стороны, при 698clip image001потенциальная энергия диполя во внешнем поле принимает минимальное значение 699clip image001, что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля 700clip image001является неустойчивым. Потенциальная энергия в этом случае принимает максимальное значение 701clip image001и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

000112

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила Fpaвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е. Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x, а положительный заряд расположен в точке с координатой х + l. Представим себе, что величина напряженности поля зависит от координаты х. Тогда равнодействующая сила Fpaвн равна

702clip image001

Такой же результат может быть получен из общего соотношения

703clip image001

где энергия П определена в (3.8). Если Е увеличивается с ростом x, то

704clip image001

и проекция 705clip image001равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

000113

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика — керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания — электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

000114

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

706clip image001

где 26clip image012, 34clip image013— величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов 707clip image001мы приходим к прежнему выражению

25clip image014

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

708clip image001

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором — по всем отрицательным зарядам системы.

Электрическая нейтральность системы означает равенство полного положительного заряда и суммы абсолютных величин всех отрицательных зарядов

709clip image001

Введем теперь понятие «центр зарядов» — положительных R + и отрицательных R

710clip image001

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

000115

где l-вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Дополнительная информация

Источник

Энергия электрического диполя во внешнем поле — справочник студента

Электрическое поле, которое окружает заряд, это реальность, независящая от нашего желания что-либо изменить и как-то повлиять на это. Отсюда можно сделать вывод, что электрическое поле является одной из форм существования материи, так же как и вещество.

Электрическое поле зарядов, находящихся в состоянии покоя, называют электростатическим.

Узнай стоимость своей работы

Чтобы обнаружить электростатическое поле определенного заряда нужно внести в его поле другой заряд, на который будет действовать определенная сила в соответствии с законом Кулона.

Однако без наличия второго заряда электростатическое поле первого заряда существует, но никак себя не проявляет.

Напряженностью Е характеризуют электростатическое поле. Напряженность в некоторой точке электрического поля – физическая величина, которая равна силе, действующей на помещенный в определенную точку поля единичный положительный покоящийся заряд, и направленная в сторону действия силы.

Если в электрическое поле, создаваемое зарядом q, внести «пробный» положительный точечный заряд qпр, то по закону Кулона на него будет действовать сила:

9bc542db0f3b9c086d6984a9c40df1bf

Если в одну точку поля помещать различные пробные заряды q/пр, q//пр и так далее, то на каждый из них будут действовать различные силы, пропорциональные величине заряда. Отношение F/qпр для всех зарядов, вносимых в поле, будет идентичным, а также будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Данную величину можно выразить формулой:

fbb6ee226aa68d3347d0d309f478ea97

Если предположить, что qпр = 1, то E = F. Отсюда делаем вывод, что напряженность электрического поля является его силовой характеристикой. Из формулы (2) с учетом выражения кулоновской силы (1) следует:

86559c741a6485f6ef79b277ba3ab57f

Из формулы (2) видно, что за единицу напряженности принимается напряженность в определенной точке поля, где на единицу заряда будет действовать единица силы. Поэтому в системе СГС единицей напряженности является дин/СГСq, а в системе СИ будет Н/Кл. Соотношение между приведенными единицами называют абсолютной электростатической единицей напряженности (СГСЕ):

Узнай стоимость своей работы

Давайте рассмотрим электрическое поле, которое создает диполь. Электрический диполь – это система равных по величине (q = q1 = q2), но противоположных по знаку зарядов, расстояние между которыми очень мало, если сравнивать с расстоянием до рассматриваемых точек электрического поля.

Электрический дипольный момент p, являющийся основной характеристикой диполя и определяемый как вектор, направленный от отрицательного заряда к положительному, и равный произведению плеча диполя l на заряд q:

008cad81d723949f93d42f0a94c9d86b

Также вектором является плечо диполя l, направленным от отрицательного заряда к положительному, и определяет расстояние между зарядами. Линия, которая проходит через оба заряда, носит название – ось диполя.

Давайте определим напряженность электрического поля в точке, которая лежит на оси диполя по середине (рисунок ниже а)):

28121ea06fd9904208e34471cba496b8

В точке В напряженность Е будет равна векторной сумме напряженностей Е/ и Е//, которые создаются положительными и отрицательными зарядами но отдельности. Между зарядами –q и +q векторы напряженностей Е/ и Е// направлены в одну сторону, поэтому по абсолютной величине результирующая напряженность Е будет равна их сумме.

Пример

На расстоянии R = 0,06 м друг от друга находятся два одинаковых точечных заряда q1 = q2 = 10-6 Кл (рисунок ниже):

Необходимо определить напряженность электрического поля в точке А, которая расположена на перпендикуляре, восстановленном в центре отрезка, который соединяет заряды, на расстоянии h = 4 см от этого отрезка. Также нужно определить напряженность и в точке В, находящейся на середине отрезка, который соединяет заряды.

Решение

По принципу суперпозиции (наложением полей) определяется напряженность поля Е. Таким образом, векторной (геометрической) суммой определяется Е, создаваемых каждым зарядом в отдельности: Е = Е1 + Е2.

Для определения напряженности в точке В сначала нужно построить векторы напряженности электрических полей от каждого заряда. Поскольку заряды положительны, то векторы Е/ и Е// будут направлены от точки В в разные стороны. По условию q1 = q2:

Электрические диполи

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Два равных по величине заряда противоположного знака, +Q и -Q, расположенных на расстоянии l друг от друга, образуют электрический диполь. Величина Ql называется дипольным моментом и обозначается символом р.

Дипольным моментом обладают многие молекулы, например двухатомная молекула СО (атом С имеет небольшой положительный заряд, а О — небольшой отрицательный заряд); несмотря на то что молекула в целом нейтральна, в ней происходит разделение зарядов из-за неравного распределения электронов между двумя атомами.

(Симметричные двухатомные молекулы, такие, как O2, не обладают дипольным моментом.)

eef9a0fea648a1d147b6a67547047f09Рассмотрим вначале диполь с моментом р = Ql, помещенный в однородное электрическое поле напряженностью Е. Дипольный момент можно представить в виде вектора р, равного по абсолютной величине Ql и направленного от отрицательного заряда к положительному. Если поле однородно, то силы, действующие на положительный заряд QE, и отрицательный, -QE, не создают результирующей силы, действующей на диполь. Однако они приводят к возникновению вращающего момента, величина которого относительно середины диполя О равна:

6c5e3bbe3a29893e8b480123c364cabf

или в векторной записи τ = рЕ. В результате диполь стремится повернуться так, чтобы вектор р был параллелен Е. Работа W, совершаемая электрическим полем над диполем, когда угол θ изменяется от θ1 до θ2, дается выражением:

1fa8d1063497bea8c6729228b8e94f47

Итак, мы видим, что происходит с электрическим диполем, помещенным во внешнее электрическое поле. Обратимся теперь к другой стороне дела. Предположим, что внешнее поле отсутствует, и определим электрическое поле, создаваемое самим диполем (способное действовать на другие заряды).

1ad068a22af54b36e5ac6afbca66f229Для простоты ограничимся точками, расположенными на перпендикуляре к середине диполя, подобно точке Р на рис. 22.26, находящейся на расстоянии r от середины диполя. (Заметим, что r на рис. 22.26 не является расстоянием от каждого из зарядов до Р, которое равно (r2 + l2/4)1/2, и именно его следует подставить в формулу.) Напряженность электрического поля в точке Р равна Е = Е+ + Е-, где Е+ и Е- — напряженности поля, создаваемые соответственно положительным и отрицательным зарядами, равные между собой по абсолютной величине:

03afc2ec842782b9d2e0f4dc932b7dc6

Их Y-компоненты в точке Р взаимно уничтожаются, и по абсолютной величине напряженность электрического поля Е равна

4ae80cc1cb7989ffebdd65db1aa38fb2

21ea0364f88ecd4f39397693001aee49

Вдали от диполя (r » l ) это выражение упрощается:

700987dd75b3da1b63430a850d335be0

Видно, что напряженность электрического поля диполя убывает с расстоянием быстрее, чем для точечного заряда (как 1/r3 вместо 1/r2). Этого и следовало ожидать: на больших расстояниях два заряда противоположных знаков кажутся столь близкими, что нейтрализуют друг друга. Зависимость вида 1/r3 справедлива и для точек, не лежащих на перпендикуляре к середине диполя.

Заключение

Существуют два вида электрических зарядов — положительные и отрицательные. Эти названия следует понимать алгебраически: всякий заряд содержит в единицах системы СИ плюс или минус столько-то кулонов (Кл).

Электрический заряд сохраняется: если в результате какого-либо процесса возникает некоторое количество заряда одного знака, то непременно появляется равное количество заряда противоположного знака на этом же или на других телах; суммарный же заряд останется равен нулю.

Проводниками являются вещества, в которых имеется достаточно электронов, обладающих свободой передвижения, в то время как вещества, у которых мало свободных электронов, оказываются изоляторами. Тело с избытком электронов заряжено отрицательно, а тело, в котором электронов меньше нормального количества, заряжено положительно.

Тело может приобретать заряд одним из трех способов: трением, когда электроны переходят с одного тела на другое; за счет электропроводности, когда заряд при контакте переходит с одного заряженного тела на другое, и посредством индукции, когда разделение зарядов происходит при приближении к телу заряженного предмета без прямого контакта между ними.

Электрические заряды взаимодействуют друг с другом. Между зарядами противоположного знака возникает сила притяжения. Заряды одного знака отталкиваются. Сила, с которой один точечный заряд действует на другой, пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними <закон Кулона):

6b99cac22738c076304506f9334a5020

Заряд или группа зарядов создают в пространстве электрическое поле. Силу, действующую на заряженный предмет, можно объяснить существованием в месте его расположения электрического поля.

Напряженность электрического поля Е в любой точке пространства представляет собой отнесенную к единице заряда силу, действующую на положительный пробный заряд q в этой точке: Е = F/q.

Электрическое поле графически представляют в виде силовых линий, которые начинаются на положительных зарядах и заканчиваются на отрицательных.

Направление силовой линии в каждой точке соответствует направлению силы, которая действует на малый положительный пробный заряд, помещенный в эту точку; плотность силовых линий пропорциональна Е. Электростатическое поле (т.е. поле в отсутствие движущихся зарядов) внутри хорошего проводника равно нулю; силовые линии вблизи заряженного проводника перпендикулярны его поверхности.

Электрический диполь — это система из двух равных по величине зарядов противоположного знака +Q и -Q, находящихся на расстоянии l. Величина р = QI называется дипольным моментом.

Диполь, помещенный в однородное электрическое поле, испытывает действие момента сил (если р и Е не параллельны) и не испытывает действия результирующей силы.

Создаваемое диполем электрическое поле убывает обратно пропорционально третьей степени расстояния r от диполя (Е

Альтернативные статьи: Электрический ток., Закон Ома. Формула.

Замечания и предложения принимаются и приветствуются!

Поведение диполя во внешнем электрическом поле

⇐ ПредыдущаяСтр 4 из 14Следующая ⇒

cc8b242edd6d7422fad96d7e3879bdc6 М1 = М2 – вращающие моменты (моменты сил), векторы моментов направлены от нас ^ чертежу; результирующий момент равен М = М1 + М2= 2qE(l/2)sina. Учитывая, что рэл = ql, получим:
вращающий момент (момент сил), действующий на диполь во внешнем поле в скалярной и векторной формах

Таким образом, в однородном внешнем электрическом поле диполь одновременно будет растягиваться и поворачиваться до тех пор, пока не окажется в положении равновесия, при этом его дипольный момент станет параллельным вектору напряженности внешнего поля.

Неоднородное поле. В этом случае на положительный и отрицательный заряды диполя будут действовать неодинаковые силы (на рис. F2 > F1). Найдем выражение для силы, действующей на диполь для случая, когда напряженность зависит только от одной переменной х. Пусть поле характеризуется градиентом dE/dx. Найдем результирующую силу F = F2 — F1.

b9c8d3c59ca08f51eb4036da98f8155a изменение напряженности на отрезке l×cosa, a — угол между векторами рэл и Е cdf1e5d75f491a28bce28758ab6b96f1
bca3c59a44dd56258b939c8918894c9d результирующая сила и дипольный момент; подставляя, получим:
18ee062e0056d710700809548fc8edda сила, действующая на диполь в неоднородном электрическом поле

Таким образом, в неоднородном электрическом поле диполь будет одновременно поворачиваться, растягиваться и втягиваться в область более сильного поля.

Тема 6. Вопрос 3.

Работа по повороту диполя в однородном внешнем электрическом поле.

Если внести диполь в однородное электростатическое поле так, что его дипольный момент будет составлять угол a с вектором напряженности поля Е, силы поля F будут поворачивать диполь (на рис. – по часовой стрелке) до достижения им положения равновесия.

9c5463ff78803b32d531b17566fc5e15 c5078134a53c30f1ee4a1bc04237c4f9 работа при вращательном движении, М — вращающий момент, a — угол поворота
работа по повороту диполя в однородном внешнем электростатическом поле

Если диполь из положения равновесия повернуть так, что между дипольным моментом и вектором напряженности внешнего поля образуется угол a, диполь получит запас потенциальной энергии Wпот. Так как работа равна убыли потенциальной энергии, то в общем случае получим:

Изменение потенциальной энергии диполя во внешнем электростатическом поле
Потенциальная энергия диполя во внешнем поле. Для определения константы надо принять некоторое положение диполя за нулевое (какое хочешь). Скобки в формуле – скалярное произведение указанных векторов.

Тема 6. Вопрос 4.

Центры «тяжести» положительных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы равен нулю.

Молекулы таких диэлектриков называются неполярными.

Под действием внешнего электрического поля заряды неполярных молекул смещаются в противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает дипольный момент.

Центры «тяжести» положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными.

При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированны в пространстве хаотично и их результирующий момент равен нулю.

Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.

Тема 6. Вопрос 5.

Часть 1.

Поляризация диэлектриков характеризуется физической величиной, называемой вектором поляризации (Р):

(Кл/м2) Здесь: pi – дипольный момент молекулы, V – объем диэлектрика. Вектор поляризации по смыслу представляет собой векторную сумму дипольных моментов всех молекул в единице объема диэлектрика.
Из опыта следует, что для многих диэлектриков при не очень сильных полях, вектор поляризации прямо пропорционален напряженности внешнего поля;

c — коэффициент пропорциональности — называется диэлектрической восприимчивостью диэлектрика, она зависит от плотности диэлектрика и температуры (c — греческая буква «хи»).

e = 1 – вакуум e @ 1 – воздух, газы e > 1 — для всех диэлектриков

диэлектрическая проницаемость – безразмерная величина, показывающая, во сколько раз уменьшается напряженность поля внутри диэлектрика по сравнению с вакуумом.

Электрическое поле в диэлектриках характеризуют также вспомогательным вектором D:

вектор электрической индукции (электрического смещения)

Вектор D физического смысла не имеет, но он удобен в случае, когда линии напряженности внешнего поля перпендикулярны поверхности диэлектрика. В этом случае D в вакууме и в диэлектрике имеет одно и то же значение: D = D0..

Векторы напряженности E, электрической индукции D и поляризации P связаны между собой соотношением:

Диэлектрическая проницаемость e это макрохарактеристика диэлектрика, она зависит от структуры и свойств его молекул и от температуры диэлектрика. Экспериментально определить e легко.

Для этого нужно поместить диэлектрик в конденсатор и измерить емкость с диэлектриком и без него: e = С/С0. Исследуя зависимость диэлектрической проницаемости e от температуры Т, можно получить сведения о свойствах молекул.

Для этого нужно иметь формулу зависимости e (Т), в которую входили бы характеристики молекул. Сложность в получении такой формулы состоит в том, что средняя напряженность поля внутри диэлектрика и поля, окружающего данную молекулу, отличаются друг от друга.

Разными учеными теоретически были получены различные формулы. Наиболее универсальной формулой является:

где n – концентрация молекул, a — поляризуемость молекулы, р0 — дипольный момент молекулы, k – постоянная Больцмана, T – абсолютная температура, e0 – электрическая постояннная

Тема 6. Вопрос 5.

Часть 2.

Из формулы следует, что если отложить на графике величину (e — 1)/(e — 2) в зависимости от обратной температуры (1/Т) для различных диэлектриков, то можно получить прямые 1, 2 или 3 (если формула справедлива!). В случае 1 (горизонтальная прямая) мы имеем дело с диэлектриком, у которого молекулы – неполярные. Под действием внешнего поля у таких молекул возникает индуцированный момент, который не зависит от температуры. Измерив величину А, можно вычислить поляризуемость a молекулы. Случай 2 соответствует диэлектрику с ориентационной поляризацией; по наклону прямой можно вычислить собственный дипольный момент р0 молекулы. В случае 3 можно сделать вывод, что молекулы диэлектрика полярные, но под действием поля у них дополнительно возникает индуцированный дипольный момент

Диполь в поле и поле диполя

Основные вопросы электростатики: Какое поле создаёт данное распределение зарядов и какая сила действует на эти заряды во внешнем поле? Относительно точечного заряда эти вопросы решаются известными всем формулами школьного курса. Следующий важный и простой объект электростатики – это, конечно, диполь. Диполь – это два разноимённых, равных по величине точечных заряда, расположенных на фиксированном расстоянии l друг от друга. Диполь характеризуется дипольным моментом p = qL (1) где l – вектор, направленный от отрицательного заряда к положительному. Интерес к диполю связан, в частности, с тем, что молекулы многих веществ обладают дипольным моментом, а кроме того, молекулы всех веществ приобретают дипольный момент во внешнем электрическом поле. И макроскопические тела (как проводящие, так и не проводящие ток) во внешнем поле поляризуются, т.е. приобретают дипольный момент. Важнейшие приложения представленных здесь результатов – это поля в диэлектрике. Поставим самые напрашивающиеся вопросы в заявленной теме и попытаемся их разрешить. Никакой особой математики, выходящей за рамки школьного курса, нам не понадобится. Производную от функции Ф(х) будем обозначать dФ/dх. Для удобства записи некоторых результатов мы будем использовать скалярное произведение векторов.

Напомним, что a · b = a · b · cos α, где α – угол между векторами. Размерную константу в законе Кулона мы обозначаем

Диполь в поле (простые задачи)

1. Какие силы действуют на диполь в однородном электрическом поле? Пусть диполь p находится в поле напряжённостью E, пусть вектор дипольного момента составляет угол α с вектором напряжённости поля. Легко видеть, что на диполь в этом случае действует пара сил с моментом М = qElsin α = pEsin α, которая стремится ориентировать диполь вдоль силовых линий поля. Так что если диполь может вращаться, то он сориентируется указанным образом. Заметим, что у диполя есть и другое положение равновесия, когда он сориентирован противоположным образом, но это положение неустойчиво. 2. Какова энергия диполя в однородном поле? Как всегда, в задачах, где речь идёт о потенциальной энергии, надо сначала условиться, откуда мы будем эту энергию отсчитывать. Пусть мы отсчитываем её от указанного выше равновесного положения. Тогда энергия – это работа, которую совершат силы поля при вращении диполя вокруг своего центра от исходного положения, характеризуемого углом α (см. рис. к п. 1), до равновесного. Напомним, что работа связана только с перемещением заряда вдоль направления E. Заряды диполя при таком вращении сместятся вдоль линий поля (в разные стороны) на l (1– cos α)/2. Поэтому искомая энергия W = qEl (1 – cos α) = pE(1 – cos α). Но чаще в учебниках по электричеству предпочитают в этой задаче полагать, что W = 0 в том положении диполя, когда вектор p перпендикулярен E. В этом случае W = –qEl cos α = –pE. Высказанное в конце п. 1 утверждение можно теперь сформулировать и иначе: диполь стремится занять теперь положение с минимальной энергией. Так, дипольные молекулы диэлектрика во внешнем поле стремятся все сориентироваться указанным образом (а тепловое движение мешает им в этом).

3. Теперь пусть диполь, сориентированный вдоль линий поля, находится в неоднородном поле. Тогда, как легко видеть, на него вдоль линий поля действует сила, направленная в сторону увеличения величины поля:

(индексы «+» и «–» помечают тот заряд диполя, к которому относится соответствующая физическая величина). Именно эта сила объясняет самый простой опыт, в котором заряженное тело (независимо от знака заряда) притягивает мелкие кусочки бумаги.

4. Прежде чем заняться расчётом поля диполя, остановимся на общих моментах. Пусть, например, нас интересует гравитационное поле какого-то астероида неправильной формы. Поле в непосредственной близости от астероида можно получить только путём компьютерного расчёта. Но, чем дальше мы отходим от астероида, тем с большей точностью мы можем рассматривать его как материальную точку (поле которой мы знаем). При стремлении к большей математической строгости надо было сказать, что мы знаем асимптотическое поведение поля при С похожей ситуацией мы сталкиваемся и в электростатическом поле. Электростатическое поле по своим свойствам очень похоже на гравитационное (потому что аналогичны фундаментальные законы: закон Кулона и закон всемирного тяготения), но, если так можно сказать, «богаче» его. Ведь электрические заряды могут быть двух типов, между ними возможно и притяжение, и отталкивание, а между «гравитационными зарядами» (т.е. массами) возможно только притяжение.

(2) Мы уже понимаем, что при Q ≠ 0 поле при больших r переходит в поле точечного заряда Q. Но возникает очень важный для нас вопрос: каким будет поле на больших расстояниях, если полный заряд Q = 0? Самое простое распределение точечных зарядов с Q = 0 – это и есть диполь. Вот почему изучение поля диполя несёт в себе важные принципиальные моменты.

Итак, нас будут в основном интересовать такие ситуации, когда все характерные размеры r весьма велики по сравнению с расстоянием l между зарядами диполя. Эту ситуацию можно описать двояко.

Во-первых, мы можем всегда иметь в виду, что заряды расположены на конечном расстоянии l друг от друга, и интересоваться поведением полученных решений при Но можно и п росто говорить о точечном диполе с определённым дипольным моментом p, тогда все наши результаты справедливы при любом r > 0 (две эти точки зрения, конечно, эквивалентны).

(выражение для (х) для х 0). Рисунок в значительной степени повторяет рисунок в п. 5. Там мы рассчитали напряжённость поля диполя и, следовательно, уже знаем, какая сила действует на точечный заряд. Заметим, что это взаимодействие являет нам простейший пример нецентральных сил (вспомните, где в школьном курсе встречаются нецентральные силы между частицами). Но ещё остались вопросы: какая сила действует на диполь? где она приложена? Можно ответить на эти вопросы сразу, без раздумий. Искомая сила F, по третьему закону Ньютона, должна быть равна – F ′ и должна быть приложена на одной прямой с F ′. Быть может, кого-то удивит, что равнодействующая двух сил, действующих на заряды +q и –q диполя, оказалась приложена где-то в стороне от диполя. Что это значит? Ничего не значит. А что значит, что равнодействующая сил тяжести, действующих на бублик, приложена в центре дырки? Равнодействующая двух сил никакого особого смысла не имеет, она просто во всех отношениях заменяет несколько (или даже бесчисленное множество) сил в фундаментальных уравнениях механики. (Объективности ради отметим, что есть весьма известные авторы, для которых такая точка зрения неприемлема. Они предпочитают говорить, что на диполь со стороны точечного заряда действует сила, приложенная к самому диполю, и ещё момент сил). 10. Найдите силу и энергию взаимодействия двух диполей, у которых векторы р1 и р2 лежат на одной прямой. Расстояние между диполями x. Сосчитаем суммарную энергию зарядов второго диполя в поле первого (см. п. 7): Ясно, что диполи, обращённые друг к другу разноимёнными полюсами (как на рисунке), притягиваются (этому соответствует знак «–» в выражении для W), при перевороте одного из диполей энергия сменит знак.

Не будем больше воспроизводить довольно однообразные выкладки и сразу выпишем выражение для величины силы взаимодействия этих диполей (проверьте!):

11. Найдите энергию взаимодействия двух диполей, у которых р1 лежит на прямой, соединяющей диполи, а р2 перпендикулярен к ней. Расстояние между диполями x. (Проверьте себя – ответ очевиден.) 12. Найдите энергию взаимодействия двух диполей, у которых векторы р1 и р2 параллельны друг другу и оба перпендикулярны оси х, на которой расположены диполи. Дополнительные замечания 13. Итак, диполь являет нам простейший пример системы зарядов с полным зарядом Q = 0. Как мы видели, потенциал поля диполя на больших расстояниях от него убывает как r–2. Нельзя ли обобщить этот результат на более общий случай? Можно обобщить понятие дипольного момента так, чтобы оно характеризовало любое распределение зарядов. В частности, для системы n точечных зарядов дипольный момент определяют так:

Легко видеть, что эта величина аддитивна. Можно доказать, что Р при Q = 0 не зависит от выбора начала отсчёта. Убедитесь, что в частном случае эта формула переходит в (1).

Сосчитайте дипольный момент Р ряда простых распределений зарядов (во всех случаях расстояние между ближайшими зарядами l). Можно было бы вести речь и о непрерывных распределениях зарядов, но тогда вместо сумм в (2) и (5) пришлось бы писать интегралы по объёму.

Полученные выше результаты подсказывают нам, в чём значение дипольного момента. И действительно, можно в общем случае доказать, что чем дальше мы отойдём от произвольной системы зарядов с полным зарядом Q = 0 и дипольным моментом Р ≠ 0, тем её поле будет ближе к рассмотренному нами полю элементарного диполя с дипольным моментом Р.

Можно было бы пойти по этому пути дальше и рассмотреть поле системы зарядов с Q = 0 и P = 0. Один из самых простых примеров такой системы представлен на рис. а – это так называемый квадруполь. Потенциал поля квадруполя убывает на бесконечности как r–3. Ряд «точечный заряд – диполь – квадруполь…» можно продолжать и далее. Общее название таких объектов мультиполь. Но мы на этом остановимся.

14. При помещении атома в электрическое поле силы, приложенные к ядру и к электронной оболочке, направлены в разные стороны. Под действием этих сил атом приобретает дипольный момент Р, совпадающий по направлению с направлением напряжённости внешнего поля Е0.

Конечно, молекулы тоже приобретают во внешнем поле дипольный момент (но для них, вообще говоря, несправедливо предыдущее утверждение о направлении вектора Р). Но многие молекулы имеют дипольные моменты и в отсутствие внешнего поля. Причём эти собственные дипольные моменты обычно намного превышают наведённые моменты (если говорить об обычных, достижимых в лаборатории полях). Для множества процессов в природе (в частности, для существования жизни) чрезвычайно важно, что у молекулы воды есть дипольный момент.

«Трудно вообразить, на что был бы похож мир, если бы атомы в молекуле Н2О были расположены по прямой линии, как в молекуле СО2; вероятно, наблюдать это было бы некому» (Э.Парселл. Электричество и магнетизм. – М., 1975).

К п. 8. Система зарядов, у которой напряжённость поля убывает на бесконечности как r–1, – это бесконечная равномерно заряженная нить.

Источник

Adblock
detector