ямр в магнитном поле земли

Ядерный магнитный резонанс для поисков подземных вод

Расширение методов поиска углеводородов и подземных вод не теряет своей актуальности. Американские и канадские исследователи относительно недавно сконструировали новый прибор, позволяющий находить разливы нефти под арктическими льдами (см. статью Аркадия Курамшина в июльском номере «ТрВ-Наука» [1]). Принцип действия этого детектора основан на явлении ядерного магнитного резонанса (ЯМР): атомные ядра, обладающие магнитным моментом, будучи помещены во внешнее магнитное поле, становятся способны поглощать радиоизлучение, «перебрасывающее» их между состояниями с разными ориентациями их магнитного момента относительно магнитного поля. Это явление широко используется в настоящее время в физике, химии, медицине: например, лежит в основе медицинской магнитно-резонансной томографии (МРТ). Но специфика нового детектора нефти состоит в том, что в нем нет собственных магнитов для создания внешнего магнитного поля, а используется магнитное поле Земли.

299 0046 Рис. 1. Создатель «Гидроскопа» А. Г. Семёнов (справа) и радиомонтажник Н. П. Грахов около прибора. Из личного архива В. Д. Жидкова

Сама идея использования земного магнитного поля в качестве внешнего магнитного поля для ЯМР-детектирования водородсодержащих жидкостей не является новой и была высказана еще в середине прошлого века. Практическое ее применение было реализовано впервые в мире в 1970-х годах в приборе «Гидроскоп», созданном учеными из Института химической кинетики и горения Сибирского отделения Академии наук СССР (ИХКиГ СО АН СССР) под руководством докт. техн. наук Анатолия ­Григорьевича Семёнова (1924–1990) [2] (рис. 1). «Гидроскоп» предназначен для разведки подземных вод на глубину до 120 м с помощью ЯМР в магнитном поле Земли. Это пример того, как блестящая идея не осталась лишь идеей, а получила свое техническое воплощение. «Гидроскоп» уже несколько десятилетий успешно работает как в пределах России, так и в странах ближнего и дальнего зарубежья. В конце 1990-х у него появились зарубежные «собратья».

Методика измерения с помощью прибора «Гидроскоп» в ее классическом варианте состоит в следующем. На поверхности земли раскладывается виток кабеля в форме окружности диаметром порядка 100 м, который служит для возбуждения сигнала ЯМР от подземных вод и одновременно является антенной для регистрации этого сигнала (рис. 2). Резонансное возбуждение производится переменным током амплитудой до сотен ампер с частотой, соответствующей ларморовской частоте прецессии протонов в земном магнитном поле в месте измерения (типичные значения — 1,5– 2,5 кГц). По окончании импульса возбуждения антенна переключается на прием, и в случае наличия подземных вод в антенне наводится экспоненциально спадающий ЯМР-сигнал [3].

299 0013 Рис. 2. Схема расположения антенны в ходе разведки. kinetics.nsc.ru

Использование магнитного поля Земли для наблюдения ЯМР имеет свои достоинства и недостатки. Оно обладает высокой пространственной однородностью (по крайней мере в масштабах порядка десятков метров, характерных для таких исследований) и временнóй стабильностью. А главное, оно пронизывает исследуемый «материал» — толщу земной поверхности, создать в которой в большом объеме искусственное однородное магнитное поле крайне сложно и энергозатратно. Для сравнения скажем, что в лабораторных ЯМР-спектрометрах область однородного магнитного поля, создаваемая входящим в состав прибора электромагнитом, имеет характерный размер порядка сантиметров, т. е. характерный размер исследуемого образца. В МР-томографах эта область достигает размеров порядка метра и расположена внутри магнита.

Очевидный недостаток измерений в магнитном поле Земли связан с его очень низкой напряженностью — примерно на 4–5 порядков ниже, чем в МР-томографах, и почти на 6 порядков ниже, чем в современных высокопольных ЯМР-спектрометрах. ­Поскольку от ­напряженности магнитного поля зависит как чувствительность измерений ЯМР (то есть минимальное количество вещества, дающего сигнал, который может быть зарегистрирован), так и их разрешающая способность (то есть способность различить близкие друг к другу спектры), то при измерении в магнитном поле Земли эти главные характеристики, очевидно, сильно страдают. Тем не менее вследствие огромного объема «образца» (десятки тысяч кубических метров) чувствительности прибора оказывается достаточно, чтобы зарегистрировать сигнал ЯМР от подземных вод, расположенных достаточно глубоко (до десятков метров) под землей.

В лабораторных экспериментах выделение близких спектров ЯМР, принадлежащих ядрам атомов, входящих в состав разного химического окружения, является основной задачей, которая как раз и позволяет определять химическую природу веществ или выделить сигнал одного из веществ на фоне других. В этом смысле разрешающая способность ЯМР в земном поле ничтожно мала в силу крайне незначительной величины магнитного поля Земли.

299 0012 Рис. 3. Оборудование «Гидроскопа» в сборе (без антенны и питающих аккумуляторов). Из личного архива Е. В. Кальнеуса

Основной же задачей ЯМР-зонди­рования является определение самого наличия подземных вод или углеводородов. Для этой задачи более важна пространственная разрешающая способность, т. е. способность отличить слои, насыщенные водой, от безводных слоев. По сути дела, это ЯМР-томография на масштабе порядка 100 м. Однако, в отличие от медицинских томографов, где для сканирования в пространстве имеется возможность создавать управляемый градиент внешнего магнитного поля, при наземном ЯМР-зондировании до глубин порядка 100 м создать подобный градиент магнитного поля практически невозможно. Поэтому в качестве вариативного элемента здесь выступает пространственная неоднородность магнитного поля возбуждающей катушки (антенны). Иначе говоря, антенна (виток провода диаметром порядка 100 м) в процессе генерации ЯМР-сигнала создает в разных точках под землей в один и тот же момент времени разное по величине возбуждающее воздействие. Сканирование происходит путем изменения величины тока зондирующего импульса: т. е. чем больше ток в антенне возбуждения, тем глубже проникает магнитное поле зондирующего импульса и тем больше вклад в итоговый ЯМР-сигнал от глубоко залегающих водосодержащих слоев. Таким образом, получив зависимость амплитуды ЯМР-сигнала от величины импульса возбуждения, мы можем рассчитать обводненность пород по глубине. К сожалению, в данном случае можно говорить о сканировании только по одной координате, т. е. по глубине. Тем не менее при поиске подземных вод во многих практических случаях этого бывает вполне достаточно.

Как упоминалось выше, антенна прибора «Гид­роскоп» достаточна велика. Кабель антенны весит порядка 100 кг. Чтобы возбудить сигнал ЯМР от подземных вод на глубине порядка 100 м, необходим мощный генератор. Ток возбуждения в антенне может достигать сотен ампер, а амплитуда напряжения на ­антенне при этом достигает нескольких киловольт. Поэтому прибор питается от четырех аккумуляторов емкостью не менее 90 ампер-часов каждый, которых хватает примерно на 8 часов работы. Суммарно оборудование (рис. 3) весит порядка 400 кг и поэтому устанавливается на подходящее транспортное средство. ИХКиГ СО РАН для исследований использует автомобиль ГАЗ-66 (рис. 4), но прибор может быть установлен практически на любой внедорожник.

Источник

ЯМР: раздвигая границы возможного

Ядерный магнитный резонанс давно превратился в рутинный инструмент для исследований в области химии, биологии, фармакологии и материаловедения. ЯМР спектроскопия широко применяется при исследовании динамических процессов жидкости, включая разнообразные химические и биохимические реакции, для определения состава, структуры и физико-химических превращений твердых материалов, а с помощью магнитно-резонансной томографии можно изучать морфологию живых объектов и протекающие в них сложные процессы.

Однако существуют факторы, которые сдерживают еще более широкое развитие и применение ЯМР в науке и практике, включая высокую стоимость оборудования, необходимость размещения объекта исследования в буквальном смысле внутри прибора и т.п. В результате современные приборы для ЯМР и МРТ практически невозможно использовать, например, в условиях промышленного производства, несмотря на большой потенциал. Наметившаяся в последнее время тенденция к стиранию границ в магнитном резонансе, связанная с перекрестным использованием методик ЯМР жидкости, твердого тела и томографии, приводит к новым открытиям – и новым научным проблемам

d6712db85f71a7c11eaa91b86676691c

Чтобы подчеркнуть полную безопасность исследования для пациентов, ЯМР-томографии пришлось потерять в своем названии букву «Я» и называться «МРТ». За создание метода МРТ Нобелевская премия была присуждена по физиологии/медицине (Пол Лаутербур и сэр Питер Мансфилд, 2003).

Однако существуют факторы, которые сдерживают более широкое развитие и применение ЯМР в науке и практике. К ним относятся высокая стоимость современного оборудования, необходимость размещения объекта исследования в буквальном смысле внутри прибора и ряд других факторов. В результате современные приборы для ЯМР и МРТ практически невозможно использовать, например, в условиях промышленного производства.

a00f6486281950da6e0a4ec59e32cb38

Тем не менее потенциал применения ЯМР на производстве весьма велик. Заманчивой является возможность определения химического состава различных смесей с непрерывным отбором проб из реактора или даже непосредственно внутри технологического трубопровода; свойств полимеров и эластомеров в условиях технологической линии; степени гидратации бетонных изделий и т. п. К сожалению, многие материалы технологических линий и процессов делают их несовместимыми с исследованиями методом ЯМР.

В частности, высокочастотное электромагнитное поле почти не проникает внутрь проводников, что не позволяет получать сигнал ЯМР от веществ в металлических контейнерах и трубопроводах. Значительные количества ионов железа в обычном цементе и различных парамагнитных ионов в горных породах негативным образом отражаются на величине регистрируемого сигнала.

Таким образом, лишь условия лаборатории (клиники) являются оптимальными для работы современных ЯМР-спектрометров и томографов, а за их пределами они, на первый взгляд, оказываются практически бесполезными. К счастью, это не так.

Непривычный ЯМР

В последние годы в ЯМР наметился ряд новых тенденций, направленных на преодоление имеющихся ограничений. Примечательно, что порой это приводит к опровержению некоторых «непреложных истин». Так, в традиционном ЯМР дорогостоящий прибор в некотором смысле является «центром вселенной», вокруг которого «вращаются» и которому подчиняются объекты исследования. И если объект или процесс по характеристикам (форме, размеру, составу, температуре, давлению и т. п.) не удается вписать в условия, диктуемые прибором, то его исследование методом ЯМР невозможно.

25dc4102e8129831b87ee2b86f7fab8f

Создание открытых и мобильных систем для ЯМР и МРТ привело в некотором смысле к смене основной парадигмы, в результате чего в центре оказался объект исследования. Для решения широкого спектра задач за пределами исследовательской лаборатории в большин­стве случаев приходится отказаться от использования высокопольных сверхпроводящих магнитов. Исполь­зование постоянных магнитов позволяет создавать относительно недорогие специализированные устройства, предназначенные для исследования конкретного объекта и оптимизированные для решения той или иной конкретной задачи. Сегодня достигнут значительный прогресс на пути создания переносных (до 10—20 кг) и мобильных (несколько десятков кг) систем.

Другая важная концепция – «ЯМР наизнанку» – позволяет отказаться от необходимости размещения объекта исследования внутри датчика (магнита). Для этого применяются магниты и радиочастотные катушки, которые создают соответствующую чувствительную область хоть и вблизи устройства, но за его пределами. Отказ от использования сверхвысоких полей, на первый взгляд, противоречит присущему ЯМР стремлению во все более высокие поля для повышения чувствительности и спектрального разрешения, однако преимущества, связанные с мобильностью устройства и отсутствием ограничений на размер и форму исследуемого объекта, могут в ряде случаев оказаться куда важнее.

Двигателем прогресса в области «ЯМР наизнанку» стали нефтедобыча и нефтеразведка. Именно для ЯМР-каротажа нефтяных скважин впервые было создано устройство, опускаемое в буровую скважину на глубину до 10 км для изучения наличия и свойств жидкой фазы (нефти и воды) в породе, характеристик порового пространства стенок скважины и взаимодействия жидкости с поверхностью пор.

На основе этой концепции создан также и ЯМР-эндоскоп, который имеет внешний диаметр 1,7 мм (!) и может вводиться в крупные сосуды человека для диагностики их состояния.

206a14baf520543a67d72fb707ff1668

Одной из наиболее успешных разработок мобильного ЯМР стала ЯМР-мышь – портативный датчик, первоначально предназначавшийся для исследования свойств резинотехнических изделий. С его помощью можно определять состояние покрышки автомобиля без демонтажа колеса, степень поперечного сшивания цепей полимера, исследовать процессы вулканизации, старения полимеров и их набухания в растворителе.

ЯМР-мышь характеризуется значительной неоднородностью приложенного постоянного магнитного поля, что в традиционном ЯМР считается большим недостатком. Однако именно большой градиент магнитного поля устройства позволяет исследовать такие нетрадиционные объекты, как армированные стальным кордом покрышки, железобетонные конструкции, конвейерные ленты и т. п. Ведь многие исследования невозможно выполнить с использованием традиционного ЯМР в однородном поле – изучить, скажем, состояние знаменитой Моны Лизы, так как для этого потребуется отделить от объекта исследования небольшой фрагмент. Бесконтактные измерения с помощью устройств типа ЯМР-мышь переводят такие исследования в разряд возможных.

Игра на магнитном поле

9b2a5c63df91684fbb46ab7f4e56cabfОбычно для получения высокого спектрального разрешения в ЯМР-спектроскопии требуется максимально однородное магнитное поле. Таким образом, может показаться, что устройства типа ЯМР-мышь с однородностью поля в десятки и сотни миллионных долей неприменимы для ЯМР-спектроскопии. Но и это препятствие преодолимо, причем как за счет создания устройств с более однородными магнитными полями, так и за счет развития и применения новых методов регистрации сигнала в существенно неоднородных магнитных полях. Поэтому в настоящее время развитие методов спектроскопии ЯМР в неоднородных магнитных полях занимает важное место в магнитном резонансе.

Достижения современного ЯМР способны обеспечить приемлемую чувствительность даже в слабых и сверхслабых магнитных полях, включая ЯМР в магнитном поле Земли (0,00005 Тл). Именно на пути в слабые и сверхслабые магнитные поля специалистов поджидал один из сюрпризов. До недавнего времени считалось, что такие поля бесполезны для спектроскопических приложений ЯМР. Действительно, различия в химических сдвигах ядер в низких полях наблюдать не удается. Но было экспериментально установлено, что спин-спиновые взаимодействия ядер обеспечивают достаточное количество спектральной информации для интерпретации спектров ЯМР, регистрируемых в полях порядка 0,01 Тл.

Развитие приложений в слабых полях позволяет преодолеть и еще одно ограничение ЯМР, казавшееся незыблемым, а именно невозможность регистрации сигнала ЯМР от объекта, заключенного в металлический контейнер.

Спиновые долгожители

При нормальных условиях для протонов в жидкости времена ядерной спиновой релаксации обычно лежат в секундном диапазоне. Это означает, что спиновая система полностью «забывает» о любом внешнем воздействии через несколько секунд. Однако многие современные ЯМР и МРТ эксперименты построены на том, что регистрация сигнала происходит не сразу, а спустя определенное время после исходного возбуждения спиновой системы. Из-за «забывчиво­сти» спиновой системы не удается измерять низкие скорости течения жидкостей и газов, малые коэффициенты диффузии молекул, слабые межспиновые взаимодействия и многое другое. И до недавнего времени казалось, что это серьезное ограничение обойти уж точно невозможно.

30d57f40d6e0f9030fd001956e12d00b

Неожиданный, но приятный сюрприз нашелся и здесь. Оказалось, что даже в жидкости при нормальных условиях спиновая система может «помнить» о своей предыстории многократно дольше, чем это диктуется временами релаксации ядерных спинов. Это связано с существованием так называемых «долгоживущих состояний» спиновых систем, времена жизни которых могут превышать времена обычной релаксации на порядок и более.

Надо сказать, что в настоящее время удивление вызывает не сам факт существования таких состояний, а то, каким же образом сообществу специалистов в области ЯМР удавалось не замечать этого на протяжении многих лет. Ведь объяснение природы таких состояний достаточно очевидно: это ядерные спиновые состояния групп эквивалентных атомов с нулевым полным суммарным спином. А если нет спина, то нет и ядерной спиновой релаксации.

В результате время жизни такого состояния может на порядки превышать времена спиновой релаксации, что можно использовать для значительного расширения применимости ЯМР к исследованию медленных физических и химических процессов. Однако не все так просто, поскольку состояние с нулевым спином не регистрируется в ЯМР-эксперименте. Трюк состоит в том, чтобы на время приложения импульсной последовательности и на время регистрации сигнала сделать ядра неэквивалентными, а в промежутке между различными интервалами эволюции спиновой системы эту эквивалентность восстановить.

88eb494efb93374926d8a2b796e70f59

Такая операция возможна благодаря, например, воздействию постоянного и переменного магнитных полей, обратимых химических превращений и др. Интересные примеры использования долгоживущих состояний включают исследование медленных диффузионных процессов и динамики медленных химических превращений. Однако это лишь первые шаги, и научное сообщество ожидают новые достижения и сюрпризы.

Параводородный усилитель

Такое огромное усиление сигнала значительно расширяет возможности применения ЯМР в гомогенном катализе, позволяя более детально исследовать механизмы гомогенных каталитических процессов, регистрировать методом ЯМР короткоживущие промежуточные состояния и т. п. Более того, усиление сигнала ЯМР на несколько порядков имеет серьезные последствия и для МРТ. Так, в настоящее время ведутся работы по исследованию методами ЯМР/МРТ процессов метаболизма in vivo, когда введенное в живой организм поляризованное вещество претерпевает в организме биохимические превращения, позволяя усиливать сигнал ЯМР продуктов этих превращений. Для этих же целей используются и другие методы гиперполяризации ядерных спинов.

В то же время в гетерогенных каталитических процессах получение ИППЯ до недавнего времени считалось невозможным, поскольку гетерогенным катализаторам промышленного гидрирования присущ совершенно иной механизм реакции, который, казалось, не дает шансов для наблюдения ИППЯ. Однако и на этом направлении у «невозможного» удалось отбить новые территории для научных исследований и практических приложений магнитного резонанса. Оказалось, что для ряда гетерогенных катализаторов гидрирования можно наблюдать усиление сигнала ЯМР продукта при использовании в реакции параводорода.

a25a3864094bfadd46db7866c812948e

Этот примечательный факт делает возможным создание новых высокочувствительных методов ЯМР для каталитических исследований, а также создание высокоэффективных процессов для получения гиперполяризованных чистых жидкостей и газов, на основе которых можно развивать новейшие биомедицинские и технические приложения метода ЯМР/МРТ. Развитие методов гиперполяризации ядерных спинов имеет особую актуальность в контексте упомянутых выше исследований и приложений в слабых и сверхслабых магнитных полях, где вопросы чувствительности имеют первоочередное значение, а получаемые коэффициенты усиления сигнала еще выше.

Итак, магнитный резонанс преодолел очередной виток спирали своего развития. В результате мы получили возможность регистрировать в слабых и неоднородных магнитных полях спектры примерно такого же качества, которое в ЯМР высокого разрешения было доступно сорок лет назад. Возникает вопрос: а является ли такое «развитие» движением вперед? Без сомнения, да. Технологии и методики постоянно совершенствуются, и еще через некоторое время качество спектров в низких и неоднородных полях приблизится к тому, которое доступно сегодня при использовании высокопольных спектрометров ЯМР.

Однако наиболее важным аспектом здесь является то, что делается это отнюдь не как альтернатива высокопольной ЯМР-спектроскопии и томографии, а как развитие метода с целью его распространения на огромный круг существенно иных задач, которые по-прежнему не могут быть решены с помощью суперсовременного и супердорогого высокопольного оборудования. В результате такой диверсификации направлений развития метода ЯМР и доступных приложений границы возможного в магнитном резонансе удалось существенно раздвинуть. И это еще далеко не предел.

Blumich B., Perlo J., Casanova F. Mobile single-sided NMR // Progr. NMR Spectr. 2008. 52. P. 197—269.

Blumich B., Anferova S., Kremer K., et al. Unilateral NMR for quality control: The NMR-MOUSE // Spectroscopy. 2003. 18. P. 18—32.

Bluimch B., Casanova F., Appelt S. NMR at low magnetic fields // Chem. Phys. Lett. 2009. 477. P. 231—240.

Blumich B., Casanova F., Dabrowski M., et al. Small-scale instrumentation for nuclear magnetic resonance of porous media // New J. Phys. 2011. 13. 015003.

Kleinberg R. L., Sezginer A., Griffin D. D., Fukuhara M. Novel NMR apparatus for investigating an external sample // J. Magn. Reson., 1992. 97. P. 466—485.

Koptyug I. V., Kovtunov K. V., Burt S. R., Anwar M. S., et al. Para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions // J. Amer. Chem. Soc. 2007. 129. P. 5580—5586.

Kovtunov K. V., Beck I. E., Bukhtiyarov V. I., Koptyug I. V. Observation of parahydrogen-induced polarization in heterogeneous hydrogenation on supported metal catalysts // Angew. Chem. Int. Ed. 2008. 47. P. 1492—1495.

Pileio G., Carravetta M., Hughes E., Levitt M. H. The long-lived nuclear singlet state of 15N-nitrous oxide in solution // J. Amer. Chem. Soc. 2008. 130. P. 12582—12583.

Sarkar R., Vasos P. R., Bodenhausen G. Singlet-state exchange NMR spectroscopy for the study of very slow dynamic processes // J. Amer. Chem. Soc. 2007. 129. P. 328—334.

Warren W. S., Jenista E., Branca R. T., Chen X. Increasing hyperpolarized spin lifetimes through true singlet eigenstates // Science. 2009. 323. P. 1711—1714.

Редакция благодарит к. х. н. Н. И. Сорокина и к. г.-м. н. В. Д. Ермикова за помощь в подготовке материалов статьи

Источник

220px

Принцип ЯМР обычно включает три последовательных этапа:

СОДЕРЖАНИЕ

История

Рассел Х. Вариан зарегистрировал «Метод и средства для корреляции ядерных свойств атомов и магнитных полей», патент США 2561490 24 июля 1951 года. В 1952 году компания Varian Associates разработала первый ЯМР-блок под названием ЯМР HR-30.

Развитие ЯМР как метода аналитической химии и биохимии идет параллельно с развитием электромагнитной технологии и передовой электроники и их внедрением в гражданское использование.

Теория ядерного магнитного резонанса

Ядерное вращение и магниты

Значения спинового углового момента

Энергия спина в магнитном поле

300px NMR splitting

300px NMR EPR

Однако если ядро ​​поместить в магнитное поле, два состояния больше не будут иметь одинаковую энергию в результате взаимодействия между ядерным магнитным дипольным моментом и внешним магнитным полем. Энергия магнитного дипольного момента в магнитном поле B 0 определяется по формуле: μ → <\ displaystyle <\ vec <\ mu>>> svg

В результате различные состояния ядерного спина имеют разные энергии в ненулевом магнитном поле. Менее формальным языком мы можем говорить о двух спиновых состояниях спина 1 / 2 как выровненные либо с магнитным полем, либо против него. Если γ положительный (верно для большинства изотопов, используемых в ЯМР), то m = 1 / 2 это более низкое энергетическое состояние.

Разница в энергии между двумя состояниями составляет:

Прецессия спиновой намагниченности

Центральным понятием в ЯМР является прецессия спиновой намагниченности вокруг магнитного поля в ядре с угловой частотой

без изменения населенностей уровней энергии, поскольку энергия постоянна (не зависящий от времени гамильтониан).

Магнитный резонанс и радиочастотные импульсы

Химическая защита

Если локальная симметрия таких молекулярных орбиталей не очень высока (приводящая к «изотропному» сдвигу), экранирующий эффект будет зависеть от ориентации молекулы по отношению к внешнему полю ( B 0 ). В твердотельной ЯМР- спектроскопии вращение под магическим углом требуется для усреднения этой ориентационной зависимости с целью получения значений частоты при средних или изотропных химических сдвигах. В этом нет необходимости в традиционных ЯМР-исследованиях молекул в растворе, поскольку быстрое «вращение молекул» усредняет анизотропию химического сдвига (CSA). В этом случае «средний» химический сдвиг (ACS) или изотропный химический сдвиг часто называют просто химическим сдвигом.

Расслабление

GWM HahnEchoDecay

ЯМР-спектроскопия

HWB NMR 900MHz 21.2 Tesla

Структуру и молекулярную динамику можно изучать (с вращением под «магическим углом» (MAS) или без него) методом ЯМР квадрупольных ядер (то есть со спином S > 1 / 2 ) даже при наличии уширения магнитного « диполь-дипольного » взаимодействия (или просто дипольного уширения), которое всегда намного меньше силы квадрупольного взаимодействия, потому что это эффект магнитного взаимодействия вместо электрического.

Непрерывная (CW) спектроскопия

По состоянию на 1996 год приборы непрерывного действия все еще использовались для рутинной работы, потому что старые приборы были дешевле в обслуживании и эксплуатации, часто работая на частоте 60 МГц с соответственно более слабыми (несверхпроводящими) электромагнитами, охлаждаемыми водой, а не жидким гелием. Одна радиокатушка работала непрерывно, охватывая диапазон частот, в то время как другая ортогональная катушка, предназначенная не для приема излучения от передатчика, принимала сигналы от ядер, которые переориентировались в растворе. По состоянию на 2014 год отремонтированные недорогие системы 60 МГц и 90 МГц продавались как приборы FT-NMR, а в 2010 году «средний рабочий» прибор ЯМР был настроен на 300 МГц.

Фурье-спектроскопия

Ричард Р. Эрнст был одним из пионеров импульсного ЯМР и получил Нобелевскую премию по химии в 1991 году за свою работу по ЯМР с преобразованием Фурье и за разработку многомерной ЯМР-спектроскопии.

Многомерная ЯМР-спектроскопия

Таких экспериментов много. В некоторых случаях фиксированные интервалы времени позволяют (среди прочего) перенос намагниченности между ядрами и, следовательно, обнаружение видов ядерно-ядерных взаимодействий, которые допускают передачу намагниченности. Обнаруживаемые взаимодействия обычно подразделяются на два типа. Существуют сквозные связи и межпространственные взаимодействия, последнее является следствием диполярного взаимодействия в твердотельном ЯМР и ядерного эффекта Оверхаузера в растворе ЯМР. Для установления расстояний между атомами могут быть использованы эксперименты, подобные разнообразию ядерных экспериментов Оверхаузера, например, методом 2D-FT ЯМР молекул в растворе.

Спектроскопия твердотельного ЯМР

70.1 °. В аморфных материалах остаточное уширение линий сохраняется, поскольку каждый сегмент находится в немного разном окружении, поэтому демонстрирует немного другую частоту ЯМР.

Чувствительность

Поскольку интенсивность сигналов ядерного магнитного резонанса и, следовательно, чувствительность метода зависят от силы магнитного поля, эта технология также развивалась на протяжении десятилетий с разработкой более мощных магнитов. Достижения, достигнутые в аудиовизуальных технологиях, также улучшили возможности генерации и обработки сигналов более новых инструментов.

Как отмечалось выше, чувствительность сигналов ядерного магнитного резонанса также зависит от присутствия магниточувствительного нуклида и, следовательно, либо от естественного содержания таких нуклидов, либо от способности экспериментатора искусственно обогащать исследуемые молекулы. с такими нуклидами. Наиболее распространенные изотопы водорода и фосфора, встречающиеся в природе (например), обладают магнитной восприимчивостью и легко используются для спектроскопии ядерного магнитного резонанса. Напротив, углерод и азот имеют полезные изотопы, но встречаются только в очень низком естественном количестве.

Другие ограничения чувствительности связаны с квантово-механической природой явления. Для квантовых состояний, разделенных энергией, эквивалентной радиочастотам, тепловая энергия из окружающей среды заставляет населенности состояний быть близкими к равным. Поскольку входящее излучение с одинаковой вероятностью вызывает стимулированное излучение (переход из верхнего состояния в нижнее), как и поглощение, эффект ЯМР зависит от избытка ядер в нижних состояниях. Несколько факторов могут снизить чувствительность, в том числе:

Изотопы

Многие изотопы химических элементов можно использовать для анализа ЯМР.

Обычно используемые ядра:

Другие ядра (обычно используемые при изучении их комплексов и химической связи или для обнаружения присутствия элемента):

Приложения

Источник

Adblock
detector