является ли магнитное поле потенциальным

Является ли магнитное поле потенциальным

Предлагается единое объяснение условий образования потенциального магнитного поля, продольных радиоволн и продольного света.

Потенциальное магнитное поле

В 1820 году Эрстед обнаружил связь между электрическим током и магнитным полем.

В 2008 году автором настоящей статьи было экспериментально установлено, что не только однонаправленный ток, но и противоположно направленные токи электрических зарядов образуют магнитное поле. Но другое магнитное поле – не вихревое, а потенциальное. Стационарным оно не действует на магнитную стрелку компаса, переменным не наводит ЭДС в замкнутом проводнике. Потенциальное поле намагничивает электропроводник. На движущийся в свободном пространстве электрический заряд воздействует продольной магнитной силой.

Первым источником потенциального магнитного поля были пространственно разнесённые противотоки в торцах двух рядом расположенных многовитковых прямоугольных рамках (Рис.1). Впоследствии к экспериментам привлекались совмещённые противотоки в трёхжильном проводе (Рис.2), в коаксиальном кабеле и другие варианты противотоковых систем.

1

В случае одного электропроводника с током отношение между количеством вихревого магнитного свойства и количеством магнитной энергии в поле определяется однозвённой формулой (1). Нет магнитного свойства, нет и магнитной энергии.

Источниками потенциального магнитного поля являются системы из нескольких противотоков. Суммарная плотность магнитной энергии в каждой точке общего поля определяется из формулы трёхзвенного баланса (4), включающего плотности магнитной энергии токовых полей, плотности положительной и отрицательной энергии притягивающих и отталкивающих взаимодействий между токами. Если балансы положительные, то в нуль-векторной ситуации (∑Н= 0) поле с потенциальным свойством образуется. Для реализации положительных балансов в системе токов должны быть пары с притягивающим взаимодействием (∑ μ0 Н k Н l ≠ 0).

С начала исследований автор полагал вихревые и невихревые поля разными проявлениями одной и той же электродинамической сущности. Предлагается единый механизм замены вихревых свойств накладывающихся полей потенциальным в общем поле.

На рисунке 3 изображён отрезок коаксиального кабеля с противотоками.

2

В его центральном проводе ток i 1, а в цилиндрической оплётке i 2. Равные и противоположно направленные токи образуют два поля встречных равных векторных магнитных потенциалов.

Согласно правилу векторной алгебры геометрическое суммирование равных встречных векторов в итоге даёт нуль-векторный результат

С математической точки зрения нуль-вектор есть ничто. Он не имеет направленности. Его модуль равен нулю.

В теориях природных явлений модуль вектора описывает какое-либо физическое наполнение, которое не исчезает в нуль-векторной ситуации, а становится другим.

Например одностороннее воздействие механической сила на тело (Рис.4) описывается вторым законом Ньютона. В нём сила является причиной ускоренного движения тела.

Двухстороннее воздействие равных сил на тело описывается законом Гука (Рис.5).

3

Нуль-вектор сил утрачивает направленность, но сохраняющееся физическое наполнение его модуля | F | описывает причину сжатия тела.

Из экспериментов следует, что около противотоков в коаксиальном кабеле потенциальное магнитное поле имеется. Предлагаем схему его образования.

При встречном наложении двух равных векторных магнитных потенциалов образуется нуль-вектор. В нём утрачиваются направленности у участвующих векторных магнитных потенциалов, а сохраняющиеся в их модулях физические наполнения обуславливают образование суммарного скалярного магнитного потенциала

Замена вихревых свойств накладывающихся магнитных полей (3) невихревым в общем поле (4) объясняется заменой векторных магнитных потенциалов скалярным.

Конфигурация магнитных силовых линий потенциального магнитного поля (4) аналогична конфигурации силовых линий потенциального электрического поля (5). Они разомкнуты и в свободном пространстве уходят от источника в бесконечность.

Продольные радиоволны и продольный свет.

image42252 image42253

Замена вихревых свойств накладывающихся поперечных полеволновых процессов потенциальным в общим продольном поле объясняется заменой векторных магнитных потенциалов (6) скалярными в суммарном поле (7)

Потенциальное магнитное поле, продольные составляющие в радиоволнах, излучаемых охлаждённой водой и в свете различных источников, были обнаружены по свойству электропроводника поглощать электромагнитную энергию, намагничиваясь при этом потенциальным магнитным полем.

Источник

Вихревой характер магнитного поля

Вихревой характер магнитного поля заключается в непрерывности линий индукции любого магнитного поля при отсутствии начала и конца, так как они либо замкнуты, либо уходят в бесконечность. На порождение полей не влияет характер контуров с током. Векторные поля, обладающие непрерывными силовыми линиями, называются вихревыми полями. Магнитное поле также можно считать вихревым.

Электростатические поля имеют силовые линии, начинающиеся и заканчивающиеся на электрических зарядах, причем, всегда находятся в разомкнутом состоянии. Линии магнитного поля замкнуты. Это говорит об отсутствии магнитных зарядов в природе.

Электрический ток образуется благодаря движению электрических зарядов. Так как магнитных зарядов нет, это объясняет отсутствие магнитного тока. Данное утверждение можно выразить при помощи уравнения:

Определение вихревого поля также выполнимо другим способом.

Вихревое магнитное поле

Векторные поля, вектор которых не равен нулю – это вихревые магнитные поля.

Следуя из теоремы о циркуляции локального вида, которая влияет на вихревой характер магнитного поля:

При отсутствии токов вектор магнитной индукции B → представляется в виде градиента скалярного магнитного потенциала φ m :

Если имеются токи, то данное представление невозможно.

Различие между потенциальными и вихревыми полями

Основными уравнениями магнитного поля постоянных токов считаются выражения вида:

Произведем сравнение с основными уравнениями электростатики:

Магнитное поле считается вихревым при наличии токов. Оно зависит от формы контура и не определяется только положением начала и конца этого контура. Существование однозначной разности потенциалов в магнитном поле исключено. Значение магнитного напряжения по замкнутому контуру не равняется нулю.

Известно значение r o t :

Ответ: Вспомнив теорему о циркуляции, получаем отсутствие токов. В данном случае, представление вектора индукции магнитного поля невозможно в виде магнитного потенциала в области, где проходят токи.

image043

Следует задать нулевой потенциал в точке В :

Источник

Магнитное поле

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой — на ЮГ.

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D1%82 %D0%BD%D0%B0 %D0%B2%D0%BE%D0%B4%D0%B5

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

%D0%BA%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B8%D0%B9 %D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

%D0%B4%D1%80%D0%B5%D0%B2%D0%BD%D0%B8%D0%B9 %D0%BA%D0%BE%D0%BC%D0%BF%D0%B0%D1%81 %D1%81%D0%BE %D1%81%D1%82%D1%80%D0%B5%D0%BB%D0%BA%D0%BE%D0%B9

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

%D1%81%D0%B0%D1%83%D0%B7 %D0%BF%D0%B0%D1%80%D0%BA

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

%D0%BB%D0%B8%D0%BD%D0%B8%D0%B8 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии — они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

%D0%B7%D0%B0%D0%BC%D0%BA%D0%BD%D1%83%D1%82%D1%8B%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B5 %D0%BB%D0%B8%D0%BD%D0%B8%D0%B8

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Если же приблизить одноименными полюсами, то произойдет их отталкивание

%D0%B2%D0%B7%D0%B0%D0%B8%D0%BC%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5 %D1%80%D0%B0%D0%B7%D0%BD%D0%BE%D0%B8%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D1%85 %D0%BF%D0%BE%D0%BB%D1%8E%D1%81%D0%BE%D0%B2 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%B0

Итак, ниже важные свойства магнитных силовых линий.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке «а» или на рисунке «б»?

%D0%BF%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Видим, что на рисунке «а» мало силовых магнитных линий, а на рисунке «б» их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке «б» больше, чем на рисунке «а».

В физике формула магнитного потока записывается как

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D1%82%D0%BE%D0%BA%D0%B0

Ф — магнитный поток, Вебер

В — плотность магнитного потока, Тесла

а — угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S — площадь, через которую проходит магнитный поток, м 2

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D1%82%D0%BE%D0%BA

Что же такое 1 Вебер? Один вебер — это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м 2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: «напряженность между ними все росла и росла». То есть по сути напряженность — это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

H — напряженность магнитного поля, Ампер/метр

B — плотность магнитного потока, Тесла

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%B2 %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5 %D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0

μ — это относительная магнитная проницаемость.

У разных веществ она разная

%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F %D0%BF%D1%80%D0%BE%D0%BD%D0%B8%D1%86%D0%B0%D0%B5%D0%BC%D0%BE%D1%81%D1%82%D1%8C %D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D1%8C %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F %D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA%D0%B0 %D1%81 %D1%82%D0%BE%D0%BA%D0%BE%D0%BC

H — напряженность магнитного поля, Ампер/метр

I — сила тока, текущая через проводник, Ампер

r — расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D0%B1%D1%83%D1%80%D0%B0%D0%B2%D1%87%D0%B8%D0%BA%D0%B0

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

%D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7

Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE %D1%81%D0%B0%D0%BC%D0%BE%D1%80%D0%B5%D0%B7%D0%B0

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

%D1%81%D1%83%D0%BC%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%BE%D0%B3%D0%BE %D0%BF%D0%BE%D0%BB%D1%8F

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

%D1%81%D1%83%D0%BC%D0%BC%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%BF%D0%BE%D0%BB%D0%B5%D0%B9

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину. У нас должно получится что-то типа этого.

%D0%BF%D1%80%D0%BE%D1%81%D1%82%D0%B0%D1%8F%20%D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

solenoid

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

%D1%81%D0%BE%D0%BB%D0%B5%D0%BD%D0%BE%D0%B8%D0%B4 %D0%BF%D1%80%D0%B8%D0%BD%D1%86%D0%B8%D0%BF %D1%80%D0%B0%D0%B1%D0%BE%D1%82%D1%8B

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала — феррита.

%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D0%BE%D0%B1%D0%BC%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%B0%D1%8F %D0%BA%D0%B0%D1%82%D1%83%D1%88%D0%BA%D0%B0

Если в электрических цепях есть такое понятие, как ЭДС — электродвижущая сила, то и в магнитных цепях есть свой аналог — МДС — магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0 %D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BE %D0%B4%D0%B2%D0%B8%D0%B6%D1%83%D1%89%D0%B5%D0%B9 %D1%81%D0%B8%D0%BB%D1%8B

I — это сила тока в катушке, Амперы

N — количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

Похожие статьи по теме «магнитное поле»

Источник

Магнитное поле и его характеристики

теория по физике ? магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

Вектор магнитной индукции

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

image1 6

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

image2 5

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

image3 4

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

image4 3

Отсюда следует, что:

image5 3

image6

Способы обозначения направлений векторов:

Вверх image7
Вниз image8
Влево image9
Вправо image10
На нас перпендикулярно плоскости чертежа image11
От нас перпендикулярно плоскости чертежа image12

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

image13

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

image14

image15

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

image16

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

image17

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

image18

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

image19

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

image20

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

Модуль напряженности магнитного поля в центральной части соленоида:

Алгоритм определения полярности электромагнита

image21

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

image22

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Screenshot 1 3На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 2 3Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Screenshot 3 3Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Adblock
detector